49,99 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 4-7 Werktage
- Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings
- Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und Matplotlib
- Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen
Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.
Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.
Ein sicherer Umgang mit Python wird vorausgesetzt.
Aus dem Inhalt:
- Trainieren von Lernalgorithmen und Implementierung in Python
- Gängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random Forest
- Natural Language Processing zur Klassifizierung von Filmbewertungen
- Clusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren Daten
- Deep-Learning-Verfahren für die Bilderkennung
- Datenkomprimierung durch Dimensionsreduktion
- Training Neuronaler Netze und GANs mit TensorFlow 2
- Kombination verschiedener Modelle für das Ensemble Learning
- Einbettung von Machine-Learning-Modellen in Webanwendungen
- Stimmungsanalyse in Social Networks
- Modellierung sequenzieller Daten durch rekurrente Neuronale Netze
- Reinforcement Learning und Implementierung von Q-Learning-Algorithmen
- Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings
- Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und Matplotlib
- Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen
Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.
Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.
Ein sicherer Umgang mit Python wird vorausgesetzt.
Aus dem Inhalt:
- Trainieren von Lernalgorithmen und Implementierung in Python
- Gängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random Forest
- Natural Language Processing zur Klassifizierung von Filmbewertungen
- Clusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren Daten
- Deep-Learning-Verfahren für die Bilderkennung
- Datenkomprimierung durch Dimensionsreduktion
- Training Neuronaler Netze und GANs mit TensorFlow 2
- Kombination verschiedener Modelle für das Ensemble Learning
- Einbettung von Machine-Learning-Modellen in Webanwendungen
- Stimmungsanalyse in Social Networks
- Modellierung sequenzieller Daten durch rekurrente Neuronale Netze
- Reinforcement Learning und Implementierung von Q-Learning-Algorithmen
Sebastian Raschka ist Assistant Professor für Statistik an der University of Wisconsin-Madison, wo er an der Entwicklung neuer Deep-Learning-Architekturen im Gebiet der Biometrie forscht. Er leitete verschiedene Seminare u.a. auf der SciPy-Konferenz.
Vahid Mirjalili erforschte mehrere Jahre an der Michigan State University Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten. Heute ist er in der Forschung des Unternehmens 3M im Bereich Machine Learning tätig.
Erscheinungsjahr: | 2021 |
---|---|
Fachbereich: | Datenkommunikation, Netze & Mailboxen |
Genre: | Informatik, Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | mitp Professional |
Inhalt: | 768 S. |
ISBN-13: | 9783747502136 |
ISBN-10: | 374750213X |
Sprache: | Deutsch |
Herstellernummer: | 74750213 |
Einband: | Kartoniert / Broschiert |
Autor: |
Raschka, Sebastian
Mirjalili, Vahid |
Auflage: | 3. Auflage |
Hersteller: |
MITP Verlags GmbH
mitp Verlags GmbH & Co.KG |
Verantwortliche Person für die EU: | mitp Verlags GmbH & Co.KG, Augustinusstr. 9a, D-50226 Frechen, mitp-verlag@sigloch.de |
Maße: | 238 x 168 x 41 mm |
Von/Mit: | Sebastian Raschka (u. a.) |
Erscheinungsdatum: | 12.03.2021 |
Gewicht: | 1,264 kg |
Sebastian Raschka ist Assistant Professor für Statistik an der University of Wisconsin-Madison, wo er an der Entwicklung neuer Deep-Learning-Architekturen im Gebiet der Biometrie forscht. Er leitete verschiedene Seminare u.a. auf der SciPy-Konferenz.
Vahid Mirjalili erforschte mehrere Jahre an der Michigan State University Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten. Heute ist er in der Forschung des Unternehmens 3M im Bereich Machine Learning tätig.
Erscheinungsjahr: | 2021 |
---|---|
Fachbereich: | Datenkommunikation, Netze & Mailboxen |
Genre: | Informatik, Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | mitp Professional |
Inhalt: | 768 S. |
ISBN-13: | 9783747502136 |
ISBN-10: | 374750213X |
Sprache: | Deutsch |
Herstellernummer: | 74750213 |
Einband: | Kartoniert / Broschiert |
Autor: |
Raschka, Sebastian
Mirjalili, Vahid |
Auflage: | 3. Auflage |
Hersteller: |
MITP Verlags GmbH
mitp Verlags GmbH & Co.KG |
Verantwortliche Person für die EU: | mitp Verlags GmbH & Co.KG, Augustinusstr. 9a, D-50226 Frechen, mitp-verlag@sigloch.de |
Maße: | 238 x 168 x 41 mm |
Von/Mit: | Sebastian Raschka (u. a.) |
Erscheinungsdatum: | 12.03.2021 |
Gewicht: | 1,264 kg |