Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Understanding Machine Learning
Buch von Shai Shalev-Shwartz (u. a.)
Sprache: Englisch

68,80 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the 'hows' and 'whys' of machine-learning algorithms, making the field accessible to both students and practitioners.
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the 'hows' and 'whys' of machine-learning algorithms, making the field accessible to both students and practitioners.
Über den Autor
Shai Shalev-Shwartz is an Associate Professor at the School of Computer Science and Engineering at the Hebrew University of Jerusalem, Israel.
Inhaltsverzeichnis
1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity trade-off; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra.
Details
Erscheinungsjahr: 2019
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Geb gebundene Bücher
ISBN-13: 9781107057135
ISBN-10: 1107057132
Sprache: Englisch
Einband: Gebunden
Autor: Shalev-Shwartz, Shai
Ben-David, Shai
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 260 x 183 x 27 mm
Von/Mit: Shai Shalev-Shwartz (u. a.)
Erscheinungsdatum: 06.03.2019
Gewicht: 0,97 kg
Artikel-ID: 105323485
Über den Autor
Shai Shalev-Shwartz is an Associate Professor at the School of Computer Science and Engineering at the Hebrew University of Jerusalem, Israel.
Inhaltsverzeichnis
1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity trade-off; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra.
Details
Erscheinungsjahr: 2019
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Geb gebundene Bücher
ISBN-13: 9781107057135
ISBN-10: 1107057132
Sprache: Englisch
Einband: Gebunden
Autor: Shalev-Shwartz, Shai
Ben-David, Shai
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 260 x 183 x 27 mm
Von/Mit: Shai Shalev-Shwartz (u. a.)
Erscheinungsdatum: 06.03.2019
Gewicht: 0,97 kg
Artikel-ID: 105323485
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte