Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
145,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 4-7 Werktage
Kategorien:
Beschreibung
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds.
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds.
Zusammenfassung
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. This book is devoted to the exposition of topology in a form easily accessible to physicists. It will be also useful to mathematicians who would like to apply topology in their work, without specialising in this discipline. The author, a topologist turned mathematical physicist has contributed many results to quantum field theory using topological methods, and is thus eminently qualified to write a book such as this.
Inhaltsverzeichnis
0 Background.- 1 Fundamental Concepts.- 2 The Degree of a Map.- 3 The Fundamental Group and Covering Spaces.- 4 Manifolds.- 5 Differential Forms and Homology in Euclidean Space.- 6 Homology and Cohomology.- 7 Homotopy Classification of Maps of the Sphere.- 8 Homotopy Groups.- 9 Fibered Spaces.- 10 Fibrations and Homotopy Groups.- 11 Homotopy Theory of Fibrations.- 12 Lie Groups.- 13 Lie Algebras.- 14 Topology of Lie Groups and Homogeneous Manifolds.- 15 Geometry of Gauge Fields.- Index of Notation.
Details
Medium: | Taschenbuch |
---|---|
Reihe: | Grundlehren der mathematischen Wissenschaften |
Inhalt: |
xi
296 S. 54 s/w Illustr. |
ISBN-13: | 9783642081316 |
ISBN-10: | 3642081312 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Schwarz, Albert S. |
Übersetzung: | Levy, Silvio |
Auflage: | Softcover reprint of hardcover 1st ed. 1994 |
Hersteller: |
Springer-Verlag GmbH
Springer Berlin Heidelberg Grundlehren der mathematischen Wissenschaften |
Verantwortliche Person für die EU: | Books on Demand GmbH, In de Tarpen 42, D-22848 Norderstedt, info@bod.de |
Maße: | 235 x 155 x 18 mm |
Von/Mit: | Albert S. Schwarz |
Erscheinungsdatum: | 01.12.2010 |
Gewicht: | 0,482 kg |
Zusammenfassung
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. This book is devoted to the exposition of topology in a form easily accessible to physicists. It will be also useful to mathematicians who would like to apply topology in their work, without specialising in this discipline. The author, a topologist turned mathematical physicist has contributed many results to quantum field theory using topological methods, and is thus eminently qualified to write a book such as this.
Inhaltsverzeichnis
0 Background.- 1 Fundamental Concepts.- 2 The Degree of a Map.- 3 The Fundamental Group and Covering Spaces.- 4 Manifolds.- 5 Differential Forms and Homology in Euclidean Space.- 6 Homology and Cohomology.- 7 Homotopy Classification of Maps of the Sphere.- 8 Homotopy Groups.- 9 Fibered Spaces.- 10 Fibrations and Homotopy Groups.- 11 Homotopy Theory of Fibrations.- 12 Lie Groups.- 13 Lie Algebras.- 14 Topology of Lie Groups and Homogeneous Manifolds.- 15 Geometry of Gauge Fields.- Index of Notation.
Details
Medium: | Taschenbuch |
---|---|
Reihe: | Grundlehren der mathematischen Wissenschaften |
Inhalt: |
xi
296 S. 54 s/w Illustr. |
ISBN-13: | 9783642081316 |
ISBN-10: | 3642081312 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Schwarz, Albert S. |
Übersetzung: | Levy, Silvio |
Auflage: | Softcover reprint of hardcover 1st ed. 1994 |
Hersteller: |
Springer-Verlag GmbH
Springer Berlin Heidelberg Grundlehren der mathematischen Wissenschaften |
Verantwortliche Person für die EU: | Books on Demand GmbH, In de Tarpen 42, D-22848 Norderstedt, info@bod.de |
Maße: | 235 x 155 x 18 mm |
Von/Mit: | Albert S. Schwarz |
Erscheinungsdatum: | 01.12.2010 |
Gewicht: | 0,482 kg |
Sicherheitshinweis