Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Thermal Design
Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells
Buch von Hosung Lee
Sprache: Englisch

169,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Thermal Design

Discover a new window to thermal engineering and thermodynamics through the study of thermal design

Thermal engineering is a specialized sub-discipline of mechanical engineering that focuses on the movement and transfer of heat energy between two mediums or altered into other forms of energy. Thermal engineers must have a strong knowledge of thermodynamics and the processes that convert generated energy from thermal sources into chemical, mechanical, or electrical energy -- as such, thermal engineers can be employed in many industries, particularly in automotive manufacturing, commercial construction, and the HVAC industry. As part of their job, thermal engineers often have to improve a current system to make it more efficient, and so must be aware of a wide array of variables and familiar with a broad sweep of systems to ensure the work they do is economically viable.

In this significantly updated new edition, Thermal Design details the physical mechanisms of standard thermal devices while integrating essential formulas and detailed derivations to give a practical understanding of the field to students. The textbook examines the design of thermal devices through mathematical modeling, graphical optimization, and occasionally computational-fluid-dynamic (CFD) simulation. Moreover, it presents information on significant thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems -- all of which are increasingly important and fundamental to numerous fields such as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space.

Readers of the Second Edition of Thermal Design will also find:
* A new chapter on thermoelectrics that reflects the latest modern technology that has recently been developed
* More problems and examples to help clarify points throughout the book
* A range of appendices, including new additions, that include more specifics on topicscovered in the book, tutorials for applications, and computational work
* A solutions manual provided on a companion website

Thermal Design is a useful reference for engineers and researchers in me chanical engineering, as well as senior undergraduate and graduate students in mechanical engineering.
Thermal Design

Discover a new window to thermal engineering and thermodynamics through the study of thermal design

Thermal engineering is a specialized sub-discipline of mechanical engineering that focuses on the movement and transfer of heat energy between two mediums or altered into other forms of energy. Thermal engineers must have a strong knowledge of thermodynamics and the processes that convert generated energy from thermal sources into chemical, mechanical, or electrical energy -- as such, thermal engineers can be employed in many industries, particularly in automotive manufacturing, commercial construction, and the HVAC industry. As part of their job, thermal engineers often have to improve a current system to make it more efficient, and so must be aware of a wide array of variables and familiar with a broad sweep of systems to ensure the work they do is economically viable.

In this significantly updated new edition, Thermal Design details the physical mechanisms of standard thermal devices while integrating essential formulas and detailed derivations to give a practical understanding of the field to students. The textbook examines the design of thermal devices through mathematical modeling, graphical optimization, and occasionally computational-fluid-dynamic (CFD) simulation. Moreover, it presents information on significant thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems -- all of which are increasingly important and fundamental to numerous fields such as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space.

Readers of the Second Edition of Thermal Design will also find:
* A new chapter on thermoelectrics that reflects the latest modern technology that has recently been developed
* More problems and examples to help clarify points throughout the book
* A range of appendices, including new additions, that include more specifics on topicscovered in the book, tutorials for applications, and computational work
* A solutions manual provided on a companion website

Thermal Design is a useful reference for engineers and researchers in me chanical engineering, as well as senior undergraduate and graduate students in mechanical engineering.
Über den Autor

HoSung Lee, PhD at the University of Michigan, Ann Arbor in 1993, is Emeritus Professor in the department of Mechanical and Aerospace Engineering at Western Michigan University, USA. His other areas of research include optimal design of thermoelectric generators and coolers and thermoelectric materials.

Inhaltsverzeichnis

Preface to the Second Edition xix

Preface to the First Edition xxi

About the Companion Website xxv

1 Introduction 1

1.1 Introduction 1

1.2 Humans and Energy 1

1.3 Thermodynamics 2

1.3.1 Energy, Heat, and Work 2

1.3.2 The First Law of Thermodynamics 2

1.3.3 Heat Engines, Refrigerators, and Heat Pumps 5

1.3.4 The Second Law of Thermodynamics 7

1.3.5 Carnot Cycle 7

1.4 Heat Transfer 11

1.4.1 Introduction 11

1.4.2 Conduction 12

1.4.3 Convection 15

1.4.3.1 Parallel Flow on an Isothermal Plate 16

1.4.3.2 A Cylinder in Cross Flow 18

1.4.3.3 Flow in Ducts 20

1.4.3.4 Free Convection 25

1.4.4 Radiation 29

1.4.4.1 Thermal Radiation 29

1.4.4.2 View Factor 34

1.4.4.3 Radiation Exchange Between Diffuse-Gray Surfaces 34

Problems 38

References 42

2 Heat Sinks 45

2.1 Longitudinal Fin of Rectangular Profile 45

2.2 Heat Transfer from Fin 47

2.3 Fin Effectiveness 48

2.4 Fin Efficiency 48

2.5 Corrected Profile Length 49

2.6 Optimizations 49

2.6.1 Constant Profile Area A p 49

2.6.2 Constant Heat Transfer from a Fin 52

2.6.3 Constant Fin Volume or Mass 53

2.6.4 Optimum Dimensions of Rectangular Fin 55

2.6.5 Radial Fins 60

2.6.6 Optimization of Radial Fins 63

2.7 Plate Fin Heat Sinks 68

2.7.1 Free (Natural) Convection Cooling 68

2.7.1.1 Small Spacing Channel 68

2.7.1.2 Large Spacing Channel 71

2.7.1.3 Optimum Fin Spacing 71

2.7.2 Forced Convection Cooling 72

2.7.2.1 Small Spacing Channel 73

2.7.2.2 Large Spacing Channel 74

2.8 Multiple Fin Array Ii 75

2.8.1 Natural (Free) Convection Cooling 77

2.9 Thermal Resistance and Overall Surface Efficiency 78

2.10 Fin Design with Thermal Radiation 97

2.10.1 Single Longitudinal Fin with Radiation 97

Problems 109

Computer Assignments 116

Project 116

References 117

3 Heat Pipes 119

3.1 Operation of Heat Pipe 119

3.2 Surface Tension 120

3.3 Heat Transfer Limitations 122

3.3.1 Capillary Limitation 123

3.3.1.1 Maximum Capillary Pressure Difference 123

3.3.1.2 Vapor Pressure Drop 125

3.3.1.3 Liquid Pressure Drop 127

3.3.1.4 Normal Hydrostatic Pressure Drop 127

3.3.1.5 Axial Hydrostatic Pressure Drop 128

3.3.2 Approximation for Capillary Pressure Difference 128

3.3.3 Sonic Limitation 128

3.3.4 Entrainment Limitation 129

3.3.5 Boiling Limitation 129

3.3.6 Viscous Limitation 130

3.3.6.1 Summary of Heat Transport Limits 134

3.3.6.2 Effective Thermal Conductivity 135

3.4 Heat Pipe Thermal Resistance 136

3.4.1 Contact Resistance 138

3.5 Variable Conductance Heat Pipes (VCHP) 141

3.5.1 Gas-Loaded Heat Pipes 141

3.5.2 Clayepyron-Clausius Equation 143

3.5.3 Applications 144

3.6 Loop Heat Pipes 146

3.7 Micro Heat Pipes 148

3.7.1 Steady-State Models 148

3.7.1.1 Conventional Model 148

3.7.1.2 Cotter's Model 150

3.8 Working Fluid 154

3.8.1 Figure of Merit 154

3.8.2 Compatibility 156

3.9 Wick Structures 157

3.10 Design Example 158

3.10.1 Selection of Material and Working Fluid 158

3.10.2 Working Fluid Properties 159

3.10.2.1 Estimation of Vapor Space Radius 159

3.10.3 Estimation of Operating Limits 159

3.10.3.1 Capillary Limits 159

3.10.3.2 Sonic Limits 160

3.10.3.3 Entrainment Limits 160

3.10.3.4 Boiling Limits 161

3.10.4 Wall Thickness 162

3.10.5 Wick Selection 163

3.10.6 Maximum Arterial Depth 164

3.10.7 Design of Arterial Wick 165

3.10.8 Capillary Limitation 166

3.10.8.1 Liquid Pressure Drop in the Arteries 167

3.10.8.2 Liquid Pressure Drop in the Circumferential Wick 167

3.10.8.3 Vapor Pressure Drop in the Vapor Space 168

3.10.9 Performance Map 169

3.10.10 Check the Temperature Drop 170

Problems 170

Design Problem 173

References 174

4 Compact Heat Exchangers 177

4.1 Introduction 177

4.2 Fundamentals of Heat Exchangers 180

4.2.1 Counterflow and Parallel Flows 180

4.2.2 Overall Heat Transfer Coefficient 182

4.2.3 Log Mean Temperature Difference (LMTD) 184

4.2.4 Flow Properties 186

4.2.5 Nusselt Numbers 186

4.2.6 Effectiveness-NTU (¿-NTU) Method 189

4.2.6.1 Parallel Flow 191

4.2.6.2 Counterflow 192

4.2.6.3 Crossflow 192

4.2.7 Heat Exchanger Pressure Drop 199

4.2.8 Fouling Resistances (Fouling Factors) 201

4.2.9 Overall Surface (Fin) Efficiency 202

4.2.10 Reasonable Velocities of Various Fluids in Pipe Flow 203

4.3 Double-Pipe Heat Exchangers 204

4.4 Shell-and-Tube Heat Exchangers 213

4.4.1 Baffles 214

4.4.2 Multiple Passes 214

4.4.3 Dimensions of Shell-and-Tube Heat Exchanger 215

4.4.4 Shell-Side Tube Layout 215

4.5 Plate Heat Exchangers (PHEs) 224

4.5.1 Flow Pass Arrangements 224

4.5.2 Geometric Properties 226

4.5.3 Friction Factor 231

4.5.4 Nusselt Number 231

4.5.5 Pressure Drops 231

4.6 Pressure Drops in Compact Heat Exchangers 245

4.6.1 Fundamentals of Core Pressure Drop 246

4.6.2 Core Entrance and Exit Pressure Drops 248

4.6.3 Contraction and Expansion Loss Coefficients 249

4.6.3.1 Circular-Tube Core 250

4.6.3.2 Square-Tube Core 251

4.6.3.3 Flat-Tube Core 252

4.6.3.4 Triangular-Tube Core 252

4.7 Finned-Tube Heat Exchangers 257

4.7.1 Geometrical Characteristics 258

4.7.2 Flow Properties 259

4.7.3 Thermal Properties 260

4.7.4 Correlations for Circular Finned-Tube Geometry 260

4.7.5 Pressure Drop 261

4.7.6 Correlations for Louvered Plate-Fin Flat-Tube Geometry 263

4.8 Plate-Fin Heat Exchangers 275

4.8.1 Geometric Characteristics 275

4.8.2 Correlations for Offset Strip Fin (OSF) Geometry 277

4.9 Louver-Fin-Type Flat-Tube Plate-Fin Heat Exchangers 297

4.9.1 Geometric Characteristics 298

4.9.2 Correlations for Louver Fin Geometry 300

4.10 Plate-Finned Heat Pipe Heat Exchanger 314

4.10.1 Geometric Characteristics 314

4.10.2 Correlations for Plate-Finned Circular Tube Heat Exchanger 315

4.10.3 Fin Efficiency 317

4.10.4 Heat Pipes 318

4.10.5 Analytical Model for Plate-Finned Heat Pipe Heat Exchanger 319

Problems 320

References 332

5 Thermoelectric Design 335

5.1 Introduction 335

5.1.1 Thermoelectric Effect 337

5.1.2 Seebeck Effect 337

5.1.3 Peltier Effect 338

5.1.4 Thomson Effect 338

5.1.5 Thomson (or Kelvin) Relationships 339

5.1.6 The Figure of Merit 339

5.1.7 New Generation Thermoelectrics 339

5.2 Thermoelectric Generators 341

5.2.1 Ideal Equations 341

5.2.2 Performance Parameters of a Thermoelectric Module 344

5.2.3 Maximum Parameters for a Thermoelectric Module 345

5.2.4 Normalized Parameters 345

5.2.5 Effective Material Properties 351

5.2.6 Comparison of Calculations with a Commercial Product 352

5.2.7 Figure of Merit and Optimum Geometry 353

5.3 Thermoelectric Coolers and Heat Pumps 354

5.3.1 Ideal Equations 355

5.3.2 Maximum Parameters 358

5.3.3 Normalized Parameters for Thermoelectric Coolers 359

5.3.4 Normalized Parameters for Thermoelectric Heat Pumps 363

5.3.5 Effective Material Properties 371

5.3.5.1 Comparison of Calculations with a Commercial Product 373

5.4 Optimal Design 373

5.4.1 Introduction 373

5.4.2 Optimal Design for Thermoelectric Generators 374

5.4.3 Optimal Design of Thermoelectric Coolers and Heat Pumps 383

5.4.3.1 Thermoelectric Heat Pumps 387

5.4.3.2 Heat Sinks Without Thermoelectric Cooler Module 388

5.5 Thomson Effect, Exact Solution, and Compatibility Factor 398

5.5.1 Thermodynamics of Thomson Effect 398

5.5.1.1 Seebeck Effect 398

5.5.1.2 Peltier Effect 399

5.5.1.3 Thomson Effect 399

5.5.1.4 Thomson (or Kelvin) Relationships 400

5.5.2 Exact Solutions 402

5.5.2.1 Equations for the Exact Solutions and the Ideal Equation 402

5.5.2.2 Thermoelectric Generator 404

5.5.2.3 Thermoelectric Coolers 405

5.5.3 Compatibility Factor 407

5.5.3.1 Reduced Current Density 407

5.5.3.2 Heat Balance Equation 408

5.5.3.3 Numerical Solution 408

5.5.3.4 Infinitesimal Efficiency 409

5.5.3.5 Reduced Efficiency 409

5.5.3.6 Reduced Efficiency 409

5.5.3.7 Compatibility Factor 409

5.5.3.8 Segmented Thermoelements 410

5.5.3.9 Thermoelectric Potential 410

5.5.4 Thomson Effects 413

5.5.4.1 Formulation of Basic Equations 413

5.5.4.2 Numeric Solutions of Thomson Effect 416

5.5.4.3 Comparison Between Thomson Effect and Ideal Equation 418

5.6 Thermal and Electrical Contact Resistances for Micro and Macro Devices 421

5.6.1 Modeling and Validation 421

5.6.1.1 Cancelation of Spreading Resistance with Thermal Contact Resistance 422

5.6.1.2 Thermoelectric Coolers 423

5.6.1.3 Thermoelectric Generators 423

5.6.1.4 Validation of Model 423

5.6.2 Micro and Macro Thermoelectric Coolers 425

5.6.2.1 Effect of Leg Length 426

5.6.2.2 Effect of Material on Ceramic Plate 426

5.6.3 Micro and Macro Thermoelectric Generators 427

5.6.3.1 Model and Verification for Macro TE Generators 427

5.6.3.2 Effect of...

Details
Erscheinungsjahr: 2022
Fachbereich: Fertigungstechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 928 S.
ISBN-13: 9781119685975
ISBN-10: 1119685974
Sprache: Englisch
Einband: Gebunden
Autor: Lee, Hosung
Hersteller: John Wiley & Sons Inc
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, amartine@wiley-vch.de
Maße: 189 x 264 x 56 mm
Von/Mit: Hosung Lee
Erscheinungsdatum: 14.06.2022
Gewicht: 1,832 kg
Artikel-ID: 120965426
Über den Autor

HoSung Lee, PhD at the University of Michigan, Ann Arbor in 1993, is Emeritus Professor in the department of Mechanical and Aerospace Engineering at Western Michigan University, USA. His other areas of research include optimal design of thermoelectric generators and coolers and thermoelectric materials.

Inhaltsverzeichnis

Preface to the Second Edition xix

Preface to the First Edition xxi

About the Companion Website xxv

1 Introduction 1

1.1 Introduction 1

1.2 Humans and Energy 1

1.3 Thermodynamics 2

1.3.1 Energy, Heat, and Work 2

1.3.2 The First Law of Thermodynamics 2

1.3.3 Heat Engines, Refrigerators, and Heat Pumps 5

1.3.4 The Second Law of Thermodynamics 7

1.3.5 Carnot Cycle 7

1.4 Heat Transfer 11

1.4.1 Introduction 11

1.4.2 Conduction 12

1.4.3 Convection 15

1.4.3.1 Parallel Flow on an Isothermal Plate 16

1.4.3.2 A Cylinder in Cross Flow 18

1.4.3.3 Flow in Ducts 20

1.4.3.4 Free Convection 25

1.4.4 Radiation 29

1.4.4.1 Thermal Radiation 29

1.4.4.2 View Factor 34

1.4.4.3 Radiation Exchange Between Diffuse-Gray Surfaces 34

Problems 38

References 42

2 Heat Sinks 45

2.1 Longitudinal Fin of Rectangular Profile 45

2.2 Heat Transfer from Fin 47

2.3 Fin Effectiveness 48

2.4 Fin Efficiency 48

2.5 Corrected Profile Length 49

2.6 Optimizations 49

2.6.1 Constant Profile Area A p 49

2.6.2 Constant Heat Transfer from a Fin 52

2.6.3 Constant Fin Volume or Mass 53

2.6.4 Optimum Dimensions of Rectangular Fin 55

2.6.5 Radial Fins 60

2.6.6 Optimization of Radial Fins 63

2.7 Plate Fin Heat Sinks 68

2.7.1 Free (Natural) Convection Cooling 68

2.7.1.1 Small Spacing Channel 68

2.7.1.2 Large Spacing Channel 71

2.7.1.3 Optimum Fin Spacing 71

2.7.2 Forced Convection Cooling 72

2.7.2.1 Small Spacing Channel 73

2.7.2.2 Large Spacing Channel 74

2.8 Multiple Fin Array Ii 75

2.8.1 Natural (Free) Convection Cooling 77

2.9 Thermal Resistance and Overall Surface Efficiency 78

2.10 Fin Design with Thermal Radiation 97

2.10.1 Single Longitudinal Fin with Radiation 97

Problems 109

Computer Assignments 116

Project 116

References 117

3 Heat Pipes 119

3.1 Operation of Heat Pipe 119

3.2 Surface Tension 120

3.3 Heat Transfer Limitations 122

3.3.1 Capillary Limitation 123

3.3.1.1 Maximum Capillary Pressure Difference 123

3.3.1.2 Vapor Pressure Drop 125

3.3.1.3 Liquid Pressure Drop 127

3.3.1.4 Normal Hydrostatic Pressure Drop 127

3.3.1.5 Axial Hydrostatic Pressure Drop 128

3.3.2 Approximation for Capillary Pressure Difference 128

3.3.3 Sonic Limitation 128

3.3.4 Entrainment Limitation 129

3.3.5 Boiling Limitation 129

3.3.6 Viscous Limitation 130

3.3.6.1 Summary of Heat Transport Limits 134

3.3.6.2 Effective Thermal Conductivity 135

3.4 Heat Pipe Thermal Resistance 136

3.4.1 Contact Resistance 138

3.5 Variable Conductance Heat Pipes (VCHP) 141

3.5.1 Gas-Loaded Heat Pipes 141

3.5.2 Clayepyron-Clausius Equation 143

3.5.3 Applications 144

3.6 Loop Heat Pipes 146

3.7 Micro Heat Pipes 148

3.7.1 Steady-State Models 148

3.7.1.1 Conventional Model 148

3.7.1.2 Cotter's Model 150

3.8 Working Fluid 154

3.8.1 Figure of Merit 154

3.8.2 Compatibility 156

3.9 Wick Structures 157

3.10 Design Example 158

3.10.1 Selection of Material and Working Fluid 158

3.10.2 Working Fluid Properties 159

3.10.2.1 Estimation of Vapor Space Radius 159

3.10.3 Estimation of Operating Limits 159

3.10.3.1 Capillary Limits 159

3.10.3.2 Sonic Limits 160

3.10.3.3 Entrainment Limits 160

3.10.3.4 Boiling Limits 161

3.10.4 Wall Thickness 162

3.10.5 Wick Selection 163

3.10.6 Maximum Arterial Depth 164

3.10.7 Design of Arterial Wick 165

3.10.8 Capillary Limitation 166

3.10.8.1 Liquid Pressure Drop in the Arteries 167

3.10.8.2 Liquid Pressure Drop in the Circumferential Wick 167

3.10.8.3 Vapor Pressure Drop in the Vapor Space 168

3.10.9 Performance Map 169

3.10.10 Check the Temperature Drop 170

Problems 170

Design Problem 173

References 174

4 Compact Heat Exchangers 177

4.1 Introduction 177

4.2 Fundamentals of Heat Exchangers 180

4.2.1 Counterflow and Parallel Flows 180

4.2.2 Overall Heat Transfer Coefficient 182

4.2.3 Log Mean Temperature Difference (LMTD) 184

4.2.4 Flow Properties 186

4.2.5 Nusselt Numbers 186

4.2.6 Effectiveness-NTU (¿-NTU) Method 189

4.2.6.1 Parallel Flow 191

4.2.6.2 Counterflow 192

4.2.6.3 Crossflow 192

4.2.7 Heat Exchanger Pressure Drop 199

4.2.8 Fouling Resistances (Fouling Factors) 201

4.2.9 Overall Surface (Fin) Efficiency 202

4.2.10 Reasonable Velocities of Various Fluids in Pipe Flow 203

4.3 Double-Pipe Heat Exchangers 204

4.4 Shell-and-Tube Heat Exchangers 213

4.4.1 Baffles 214

4.4.2 Multiple Passes 214

4.4.3 Dimensions of Shell-and-Tube Heat Exchanger 215

4.4.4 Shell-Side Tube Layout 215

4.5 Plate Heat Exchangers (PHEs) 224

4.5.1 Flow Pass Arrangements 224

4.5.2 Geometric Properties 226

4.5.3 Friction Factor 231

4.5.4 Nusselt Number 231

4.5.5 Pressure Drops 231

4.6 Pressure Drops in Compact Heat Exchangers 245

4.6.1 Fundamentals of Core Pressure Drop 246

4.6.2 Core Entrance and Exit Pressure Drops 248

4.6.3 Contraction and Expansion Loss Coefficients 249

4.6.3.1 Circular-Tube Core 250

4.6.3.2 Square-Tube Core 251

4.6.3.3 Flat-Tube Core 252

4.6.3.4 Triangular-Tube Core 252

4.7 Finned-Tube Heat Exchangers 257

4.7.1 Geometrical Characteristics 258

4.7.2 Flow Properties 259

4.7.3 Thermal Properties 260

4.7.4 Correlations for Circular Finned-Tube Geometry 260

4.7.5 Pressure Drop 261

4.7.6 Correlations for Louvered Plate-Fin Flat-Tube Geometry 263

4.8 Plate-Fin Heat Exchangers 275

4.8.1 Geometric Characteristics 275

4.8.2 Correlations for Offset Strip Fin (OSF) Geometry 277

4.9 Louver-Fin-Type Flat-Tube Plate-Fin Heat Exchangers 297

4.9.1 Geometric Characteristics 298

4.9.2 Correlations for Louver Fin Geometry 300

4.10 Plate-Finned Heat Pipe Heat Exchanger 314

4.10.1 Geometric Characteristics 314

4.10.2 Correlations for Plate-Finned Circular Tube Heat Exchanger 315

4.10.3 Fin Efficiency 317

4.10.4 Heat Pipes 318

4.10.5 Analytical Model for Plate-Finned Heat Pipe Heat Exchanger 319

Problems 320

References 332

5 Thermoelectric Design 335

5.1 Introduction 335

5.1.1 Thermoelectric Effect 337

5.1.2 Seebeck Effect 337

5.1.3 Peltier Effect 338

5.1.4 Thomson Effect 338

5.1.5 Thomson (or Kelvin) Relationships 339

5.1.6 The Figure of Merit 339

5.1.7 New Generation Thermoelectrics 339

5.2 Thermoelectric Generators 341

5.2.1 Ideal Equations 341

5.2.2 Performance Parameters of a Thermoelectric Module 344

5.2.3 Maximum Parameters for a Thermoelectric Module 345

5.2.4 Normalized Parameters 345

5.2.5 Effective Material Properties 351

5.2.6 Comparison of Calculations with a Commercial Product 352

5.2.7 Figure of Merit and Optimum Geometry 353

5.3 Thermoelectric Coolers and Heat Pumps 354

5.3.1 Ideal Equations 355

5.3.2 Maximum Parameters 358

5.3.3 Normalized Parameters for Thermoelectric Coolers 359

5.3.4 Normalized Parameters for Thermoelectric Heat Pumps 363

5.3.5 Effective Material Properties 371

5.3.5.1 Comparison of Calculations with a Commercial Product 373

5.4 Optimal Design 373

5.4.1 Introduction 373

5.4.2 Optimal Design for Thermoelectric Generators 374

5.4.3 Optimal Design of Thermoelectric Coolers and Heat Pumps 383

5.4.3.1 Thermoelectric Heat Pumps 387

5.4.3.2 Heat Sinks Without Thermoelectric Cooler Module 388

5.5 Thomson Effect, Exact Solution, and Compatibility Factor 398

5.5.1 Thermodynamics of Thomson Effect 398

5.5.1.1 Seebeck Effect 398

5.5.1.2 Peltier Effect 399

5.5.1.3 Thomson Effect 399

5.5.1.4 Thomson (or Kelvin) Relationships 400

5.5.2 Exact Solutions 402

5.5.2.1 Equations for the Exact Solutions and the Ideal Equation 402

5.5.2.2 Thermoelectric Generator 404

5.5.2.3 Thermoelectric Coolers 405

5.5.3 Compatibility Factor 407

5.5.3.1 Reduced Current Density 407

5.5.3.2 Heat Balance Equation 408

5.5.3.3 Numerical Solution 408

5.5.3.4 Infinitesimal Efficiency 409

5.5.3.5 Reduced Efficiency 409

5.5.3.6 Reduced Efficiency 409

5.5.3.7 Compatibility Factor 409

5.5.3.8 Segmented Thermoelements 410

5.5.3.9 Thermoelectric Potential 410

5.5.4 Thomson Effects 413

5.5.4.1 Formulation of Basic Equations 413

5.5.4.2 Numeric Solutions of Thomson Effect 416

5.5.4.3 Comparison Between Thomson Effect and Ideal Equation 418

5.6 Thermal and Electrical Contact Resistances for Micro and Macro Devices 421

5.6.1 Modeling and Validation 421

5.6.1.1 Cancelation of Spreading Resistance with Thermal Contact Resistance 422

5.6.1.2 Thermoelectric Coolers 423

5.6.1.3 Thermoelectric Generators 423

5.6.1.4 Validation of Model 423

5.6.2 Micro and Macro Thermoelectric Coolers 425

5.6.2.1 Effect of Leg Length 426

5.6.2.2 Effect of Material on Ceramic Plate 426

5.6.3 Micro and Macro Thermoelectric Generators 427

5.6.3.1 Model and Verification for Macro TE Generators 427

5.6.3.2 Effect of...

Details
Erscheinungsjahr: 2022
Fachbereich: Fertigungstechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 928 S.
ISBN-13: 9781119685975
ISBN-10: 1119685974
Sprache: Englisch
Einband: Gebunden
Autor: Lee, Hosung
Hersteller: John Wiley & Sons Inc
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, amartine@wiley-vch.de
Maße: 189 x 264 x 56 mm
Von/Mit: Hosung Lee
Erscheinungsdatum: 14.06.2022
Gewicht: 1,832 kg
Artikel-ID: 120965426
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte