Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
140,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
This book provides a comprehensive understanding of the nucleation, motion, and interaction between crystalline defects called dislocations.
This book provides a comprehensive understanding of the nucleation, motion, and interaction between crystalline defects called dislocations.
Über den Autor
Peter M. Anderson received his ScB degree in Engineering from Brown University, Rhode Island in 1981 and his ScM and PhD degrees in Applied Sciences from Harvard University, Massachusetts in 1982 and 1986, respectively. Following a two-year post-doctoral fellowship at the University of Cambridge, he joined Ohio State University where he is currently Professor and Chair in the Department of Materials Science and Engineering. He has authored or coauthored over 100 articles on mechanical behavior of bulk and thin film materials, including a chapter on crystal plasticity in Fundamentals of Metal Forming and a set of over 300 PowerPoint lecture slides that serve as an instructors' resource for the introductory textbook Materials Science and Engineering: An Introduction. He has held visiting positions at Brown University, the National Institute of Standards and Technology, Ruhr-Universität Bochum, and Los Alamos National Laboratory, where he was Bernd T. Matthias Scholar. He is recipient of an Office of Naval Research Young Investigator Award, three-time recipient of the Boyer Award for Teaching Innovation, and also received the Lumley Research Award.
Inhaltsverzeichnis
Part I. Isotropic Continua: 1. Introductory material; 2. Elasticity; 3. Theory of straight dislocations; 4. Theory of curved dislocations; 5. Applications to dislocation interactions; 6. Applications to self energies; 7. Dislocations at high velocities; Part II. Effects of Crystal Structure: 8. The influence of lattice periodicity; 9. Slip systems of perfect dislocations; 10. Partial dislocations in FCC metals; 11. Partial dislocations in other structures; 12. Dislocations in ionic crystals; 13. Dislocations in anisotropic elastic media; Part III. Interactions with Point Defects: 14. Equilibrium defect concentrations; 15. Diffusive glide and climb processes; 16. Glide of jogged dislocations; 17. Dislocation motion in vacancy supersaturations; 18. Effects of solute atoms on dislocation motion; Part IV. Groups of Dislocations: 19. Grain boundaries and interfaces; 20. Dislocation sources; 21. Dislocation pileups and cracks; 22. Dislocation intersections and barriers; 23. Deformation twinning.
Details
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Importe, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | Gebunden |
ISBN-13: | 9780521864367 |
ISBN-10: | 0521864364 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC gerader Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Anderson, Peter
Hirth, John Lothe, Jens |
Hersteller: | Cambridge University Press |
Verantwortliche Person für die EU: | Books on Demand GmbH, In de Tarpen 42, D-22848 Norderstedt, info@bod.de |
Maße: | 286 x 221 x 43 mm |
Von/Mit: | Peter Anderson (u. a.) |
Erscheinungsdatum: | 03.10.2018 |
Gewicht: | 2,041 kg |
Über den Autor
Peter M. Anderson received his ScB degree in Engineering from Brown University, Rhode Island in 1981 and his ScM and PhD degrees in Applied Sciences from Harvard University, Massachusetts in 1982 and 1986, respectively. Following a two-year post-doctoral fellowship at the University of Cambridge, he joined Ohio State University where he is currently Professor and Chair in the Department of Materials Science and Engineering. He has authored or coauthored over 100 articles on mechanical behavior of bulk and thin film materials, including a chapter on crystal plasticity in Fundamentals of Metal Forming and a set of over 300 PowerPoint lecture slides that serve as an instructors' resource for the introductory textbook Materials Science and Engineering: An Introduction. He has held visiting positions at Brown University, the National Institute of Standards and Technology, Ruhr-Universität Bochum, and Los Alamos National Laboratory, where he was Bernd T. Matthias Scholar. He is recipient of an Office of Naval Research Young Investigator Award, three-time recipient of the Boyer Award for Teaching Innovation, and also received the Lumley Research Award.
Inhaltsverzeichnis
Part I. Isotropic Continua: 1. Introductory material; 2. Elasticity; 3. Theory of straight dislocations; 4. Theory of curved dislocations; 5. Applications to dislocation interactions; 6. Applications to self energies; 7. Dislocations at high velocities; Part II. Effects of Crystal Structure: 8. The influence of lattice periodicity; 9. Slip systems of perfect dislocations; 10. Partial dislocations in FCC metals; 11. Partial dislocations in other structures; 12. Dislocations in ionic crystals; 13. Dislocations in anisotropic elastic media; Part III. Interactions with Point Defects: 14. Equilibrium defect concentrations; 15. Diffusive glide and climb processes; 16. Glide of jogged dislocations; 17. Dislocation motion in vacancy supersaturations; 18. Effects of solute atoms on dislocation motion; Part IV. Groups of Dislocations: 19. Grain boundaries and interfaces; 20. Dislocation sources; 21. Dislocation pileups and cracks; 22. Dislocation intersections and barriers; 23. Deformation twinning.
Details
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Importe, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | Gebunden |
ISBN-13: | 9780521864367 |
ISBN-10: | 0521864364 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC gerader Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Anderson, Peter
Hirth, John Lothe, Jens |
Hersteller: | Cambridge University Press |
Verantwortliche Person für die EU: | Books on Demand GmbH, In de Tarpen 42, D-22848 Norderstedt, info@bod.de |
Maße: | 286 x 221 x 43 mm |
Von/Mit: | Peter Anderson (u. a.) |
Erscheinungsdatum: | 03.10.2018 |
Gewicht: | 2,041 kg |
Sicherheitshinweis