Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
The Mathematics of Machine Learning
Lectures on Supervised Methods and Beyond
Taschenbuch von Maria Han Veiga (u. a.)
Sprache: Englisch

56,25 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung

This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics.

There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction.

This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.

This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics.

There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction.

This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.

Über den Autor

Dr. Maria Han Veiga,

Assistant professor of mathematics, Ohio State University, Ohio, USA


Prior to joining Ohio State, she was a postdoctoral fellow at the University of Michigan in Mathematics and Data Science (MIDAS). She obtained her PhD at the University of Zurich. Her research focuses on numerical analysis for hyperbolic partial differential equations and scientific machine learning.

Dr. François Ged

Postdoctoral fellow, University of Vienna, Austria


He obtained his PhD in Mathematics at the University of Zurich, Switzerland, after which he was a postdoc fellow at the École Polytechnique Fédérale de Lausanne. His research interests gravitate around the theory of deep learning and reinforcement learning, as well as mathematical population genetics and growth-fragmentation processes.

Details
Empfohlen (bis): 16
Empfohlen (von): 13
Erscheinungsjahr: 2024
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: De Gruyter Textbook
Inhalt: X
200 S.
13 s/w Illustr.
26 farbige Illustr.
13 b/w and 26 col. ill.
ISBN-13: 9783111288475
ISBN-10: 3111288471
Sprache: Englisch
Einband: Klappenbroschur
Autor: Han Veiga, Maria
Gaston Ged, François
Hersteller: De Gruyter
Walter de Gruyter
Verantwortliche Person für die EU: De Gruyter, Genthiner Straße 13, D-10785 Berlin, orders-books@degruyter.com
Abbildungen: 13 b/w and 26 col. illustrations
Maße: 236 x 167 x 15 mm
Von/Mit: Maria Han Veiga (u. a.)
Erscheinungsdatum: 20.05.2024
Gewicht: 0,36 kg
Artikel-ID: 128340550
Über den Autor

Dr. Maria Han Veiga,

Assistant professor of mathematics, Ohio State University, Ohio, USA


Prior to joining Ohio State, she was a postdoctoral fellow at the University of Michigan in Mathematics and Data Science (MIDAS). She obtained her PhD at the University of Zurich. Her research focuses on numerical analysis for hyperbolic partial differential equations and scientific machine learning.

Dr. François Ged

Postdoctoral fellow, University of Vienna, Austria


He obtained his PhD in Mathematics at the University of Zurich, Switzerland, after which he was a postdoc fellow at the École Polytechnique Fédérale de Lausanne. His research interests gravitate around the theory of deep learning and reinforcement learning, as well as mathematical population genetics and growth-fragmentation processes.

Details
Empfohlen (bis): 16
Empfohlen (von): 13
Erscheinungsjahr: 2024
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: De Gruyter Textbook
Inhalt: X
200 S.
13 s/w Illustr.
26 farbige Illustr.
13 b/w and 26 col. ill.
ISBN-13: 9783111288475
ISBN-10: 3111288471
Sprache: Englisch
Einband: Klappenbroschur
Autor: Han Veiga, Maria
Gaston Ged, François
Hersteller: De Gruyter
Walter de Gruyter
Verantwortliche Person für die EU: De Gruyter, Genthiner Straße 13, D-10785 Berlin, orders-books@degruyter.com
Abbildungen: 13 b/w and 26 col. illustrations
Maße: 236 x 167 x 15 mm
Von/Mit: Maria Han Veiga (u. a.)
Erscheinungsdatum: 20.05.2024
Gewicht: 0,36 kg
Artikel-ID: 128340550
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte