Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Statistical Thermodynamics
An Information Theory Approach
Buch von Christopher Aubin
Sprache: Englisch

138,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung

An accessible and rigorous approach to thermodynamics and statistical mechanics

In Statistical Thermodynamics: An Information Theory Approach, distinguished physicist Dr. Christopher Aubin delivers an accessible and comprehensive treatment of the subject from a statistical mechanics perspective. The author discusses the most challenging concept, entropy, using an information theory approach, allowing readers to build a solid foundation in an oft misunderstood and critically important physics concept.

This text offers readers access to complimentary online materials, including animations, simple code, and more, that supplement the discussions of complex topics in the book. It provides calculations not usually provided in comparable textbooks that demonstrate how to perform the mathematics of thermodynamics in a systematic way.

Readers will also find authoritative explorations of relevant theory accompanied by clear examples of applications and experiments, as well as:

  • A brief introduction to information theory, as well as discussions of statistical systems, phase space, and the Microcanonical Ensemble
  • Comprehensive explorations of the laws and mathematics of thermodynamics, as well as free expansion, Joule-Thomson expansion, heat?engines, and refrigerators
  • Practical discussions of classical and quantum statistics, quantum ideal gases, and blackbody radiation
  • Fulsome treatments of novel topics, including Bose-Einstein condensation, the Fermi gas, and black hole thermodynamics

Perfect for upper-level undergraduate students studying statistical mechanics and thermodynamics, Statistical Thermodynamics: An Information Theory Approach provides an alternative and accessible approach to the subject.

An accessible and rigorous approach to thermodynamics and statistical mechanics

In Statistical Thermodynamics: An Information Theory Approach, distinguished physicist Dr. Christopher Aubin delivers an accessible and comprehensive treatment of the subject from a statistical mechanics perspective. The author discusses the most challenging concept, entropy, using an information theory approach, allowing readers to build a solid foundation in an oft misunderstood and critically important physics concept.

This text offers readers access to complimentary online materials, including animations, simple code, and more, that supplement the discussions of complex topics in the book. It provides calculations not usually provided in comparable textbooks that demonstrate how to perform the mathematics of thermodynamics in a systematic way.

Readers will also find authoritative explorations of relevant theory accompanied by clear examples of applications and experiments, as well as:

  • A brief introduction to information theory, as well as discussions of statistical systems, phase space, and the Microcanonical Ensemble
  • Comprehensive explorations of the laws and mathematics of thermodynamics, as well as free expansion, Joule-Thomson expansion, heat?engines, and refrigerators
  • Practical discussions of classical and quantum statistics, quantum ideal gases, and blackbody radiation
  • Fulsome treatments of novel topics, including Bose-Einstein condensation, the Fermi gas, and black hole thermodynamics

Perfect for upper-level undergraduate students studying statistical mechanics and thermodynamics, Statistical Thermodynamics: An Information Theory Approach provides an alternative and accessible approach to the subject.

Über den Autor

Christopher Aubin, PhD, is an Associate Professor in the Department of Physics and Engineering Physics at Fordham University in the Bronx, New York, USA. He earned his doctorate in Physics at Washington University in 2004. His research is focused on the area of lattice QCD.

Inhaltsverzeichnis

Preface xiii

Acknowledgments xv

About the Companion Website xvii

1 Introduction 1

1.1 What is Thermodynamics? 2

1.2 What Is Statistical Mechanics? 5

1.3 Our Approach 6

2 Introduction to Probability Theory 9

2.1 Understanding Probability 9

2.2 Randomness, Fairness, and Probability 10

2.3 Mean Values 15

2.4 Continuous Probability Distributions 18

2.5 Common Probability Distributions 20

2.5.1 Binomial Distribution 20

2.5.2 Gaussian Distribution 21

2.6 Summary 22

Problems 23

References 28

3 Introduction to Information Theory 31

3.1 Missing Information 31

3.2 Missing Information for a General Probability Distribution 37

3.3 Summary 41

Problems 42

References 45

Further Reading 45

4 Statistical Systems and the Microcanonical Ensemble 47

4.1 From Probability and Information Theory to Physics 47

4.2 States in Statistical Systems 48

4.3 Ensembles in Statistical Systems 50

4.4 From States to Information 54

4.5 Microcanonical Ensemble: Counting States 59

4.5.1 Discrete Systems 59

4.5.2 Continuous Systems 62

4.5.3 From ¿ ¿ ¿ 64

4.5.4 Classical Ideal Gas 67

4.6 Interactions Between Systems 70

4.6.1 Thermal Interaction 70

4.6.2 Mechanical Interaction 71

4.7 Quasistatic Processes 73

4.7.1 Exact vs. Inexact Differentials 74

4.7.2 Physical Examples 77

4.8 Summary 79

Problems 79

References 85

5 Equilibrium and Temperature 87

5.1 Equilibrium and the Approach to it 87

5.1.1 Equilibrium 87

5.1.2 Irreversible and Reversible Processes 89

5.1.3 Two Systems in Equilibrium 90

5.1.4 Approaching Thermal Equilibrium 93

5.2 Temperature 95

5.3 Properties of Temperature 96

5.3.1 Negative Absolute Temperature 97

5.3.2 Temperature Scales 98

5.4 Summary 101

Problems 101

References 103

6 Thermodynamics: The Laws and the Mathematics 105

6.1 Interactions Between Systems 105

6.1.1 Quasistatic Thermal Interaction 105

6.1.2 The Heat Reservoir 106

6.1.3 General Interactions Between Systems 108

6.1.4 The Entropy in the Ground state 116

6.2 The First Derivatives 119

6.2.1 Heat Capacity 120

6.2.2 Coefficient of Thermal Expansion 125

6.2.3 Isothermal Compressibility 125

6.3 The Legendre Transform and Thermodynamic Potentials 125

6.3.1 Naturally Independent Variables 126

6.3.2 Legendre Transform 127

6.3.3 Thermodynamic Potentials 130

6.3.4 Fundamental Relations and the Equations of State 135

6.4 Derivative Crushing 136

6.5 More About the Classical Ideal Gas 142

6.6 First Derivatives Near Absolute Zero 145

6.7 Empirical Determination of the Entropy and Internal Energy 146

6.8 Summary 150

Problems 150

References 157

7 Applications of Thermodynamics 159

7.1 Adiabatic Expansion 159

7.2 Cooling Gases 162

7.2.1 Free Expansion 162

7.2.2 Throttling (Joule-Thomson) Process 165

7.3 Heat Engines 168

7.3.1 Carnot Cycle 171

7.4 Refrigerators 173

7.5 Summary 175

Problems 175

References 180

Further Reading 180

8 The Canonical Distribution 181

8.1 Restarting Our Study of Systems 181

8.1.1 A as an Isolated System 182

8.1.2 System in Contact with a Heat Reservoir 182

8.2 Connecting to the Microcanonical Ensemble 188

8.2.1 Mean Energy 189

8.2.2 Variance in ¿ 189

8.2.3 Mean Pressure 190

8.3 Thermodynamics and the Canonical Ensemble 191

8.4 Classical Ideal Gas (Yet Again) 193

8.5 Fudged Classical Statistics 196

8.6 Non-ideal Gases 198

8.7 Specified Mean Energy 203

8.8 Summary 204

Problems 205

9 Applications of the Canonical Distribution 211

9.1 Equipartition Theorem 211

9.2 Specific Heat of Solids 213

9.2.1 The Classical Case 214

9.2.2 The Einstein Model 216

9.2.3 A More Realistic Model 218

9.2.4 The Debye Model 220

9.3 Paramagnetism 221

9.4 Introduction to Kinetic Theory 226

9.4.1 Maxwell Velocity Distribution 226

9.4.2 Molecules Striking a Surface 231

9.4.3 Effusion 233

9.5 Summary 234

Problems 234

References 238

10 Phase Transitions and Chemical Equilibrium 241

10.1 Introduction to Phases 241

10.2 Equilibrium Conditions 243

10.2.1 Isolated System 243

10.2.2 A System in Contact with a Heat and Work Reservoir 245

10.3 Phase Equilibrium 247

10.3.1 Phase Diagram of Water 250

10.3.2 Vapor Pressure of an Ideal Gas 251

10.4 From the Equation of State to a Phase Transition 252

10.4.1 Stable Equilibrium Requirements 254

10.4.2 Back to Our Phase Transition 256

10.4.3 Density Fluctuations 262

10.5 Different Phases as Different Substances 263

10.5.1 Systems with Many Components 265

10.5.2 Gibbs-Duhem Relation 266

10.6 Chemical Equilibrium 268

10.7 Chemical Equilibrium Between Ideal Gases 270

10.8 Summary 275

Problems 275

References 281

11 Quantum Statistics 283

11.1 Grand Canonical Ensemble 283

11.1.1 A System in Contact with a Particle Reservoir 283

11.1.2 Connecting ¿ to Thermodynamics 286

11.2 Classical vs. Quantum Statistics 288

11.2.1 Symmetry Requirements 289

11.3 The Occupation Number 294

11.3.1 Maxwell-Boltzmann Distribution Function 295

11.3.2 Photon Distribution Function 297

11.3.3 Bose-Einstein Statistics 298

11.3.4 Fermi-Dirac Statistics 299

11.4 Classical Limit 301

11.4.1 From Quantum States to Classical Phase Space 304

11.5 Quantum Partition Function in the Classical Limit 307

11.6 Vapor Pressure of a Solid 308

11.6.1 General Expression for the Vapor Pressure 309

11.6.2 Vapor Pressure of a Solid in the Einstein Model 311

11.7 Partition Function of Ideal Polyatomic Molecules 312

11.7.1 Translational Motion of the Center of Mass 313

11.7.2 Electronic States 314

11.7.3 Rotation 314

11.7.4 Vibration 316

11.7.5 Molar Specific Heat of a Diatomic Molecule 317

11.8 Summary 317

Problems 318

Reference 320

12 Applications of Quantum Statistics 321

12.1 Blackbody Radiation 321

12.1.1 From E&M to Photons 321

12.1.2 Photon Gas 323

12.1.3 Radiation Pressure 326

12.1.4 Radiation from a Hot Object 327

12.2 Bose-Einstein Condensation 329

12.3 Fermi Gas 333

12.4 Summary 337

Problems 338

References 340

13 Black Hole Thermodynamics 341

13.1 Brief Introduction to General Relativity 341

13.1.1 Geometrized Units 341

13.1.2 Black Holes 343

13.1.3 Hawking Radiation 345

13.2 Black Hole Thermodynamics 345

13.2.1 Black Hole Heat Engine 346

13.2.2 The Math of Black Hole Thermodynamics 348

13.3 Heat Capacity of a Black Hole 351

13.4 Summary 352

Problems 352

References 353

Appendix A Important Constants and Units 355

References 357

Appendix B Periodic Table of Elements 359

Appendix C Gaussian Integrals 361

Appendix D Volumes in n-Dimensions 363

Appendix E Partial Derivatives in Thermodynamics 367

Reference 371

Index 373

Details
Erscheinungsjahr: 2024
Fachbereich: Thermodynamik
Genre: Importe, Physik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Preface xiiiAcknowledgments xvAbout the Companion Website xvii1 Introduction 11.1 What is Thermodynamics? 21.2 What Is Statistical Mechanics? 51.3 Our Approach 62 Introduction to Probability Theory 92.1 Understanding Probability 92.2 Randomness
Fairness
ISBN-13: 9781394162277
ISBN-10: 1394162278
Sprache: Englisch
Einband: Gebunden
Autor: Aubin, Christopher
Hersteller: John Wiley & Sons Inc
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 257 x 181 x 26 mm
Von/Mit: Christopher Aubin
Erscheinungsdatum: 07.02.2024
Gewicht: 0,898 kg
Artikel-ID: 128494052
Über den Autor

Christopher Aubin, PhD, is an Associate Professor in the Department of Physics and Engineering Physics at Fordham University in the Bronx, New York, USA. He earned his doctorate in Physics at Washington University in 2004. His research is focused on the area of lattice QCD.

Inhaltsverzeichnis

Preface xiii

Acknowledgments xv

About the Companion Website xvii

1 Introduction 1

1.1 What is Thermodynamics? 2

1.2 What Is Statistical Mechanics? 5

1.3 Our Approach 6

2 Introduction to Probability Theory 9

2.1 Understanding Probability 9

2.2 Randomness, Fairness, and Probability 10

2.3 Mean Values 15

2.4 Continuous Probability Distributions 18

2.5 Common Probability Distributions 20

2.5.1 Binomial Distribution 20

2.5.2 Gaussian Distribution 21

2.6 Summary 22

Problems 23

References 28

3 Introduction to Information Theory 31

3.1 Missing Information 31

3.2 Missing Information for a General Probability Distribution 37

3.3 Summary 41

Problems 42

References 45

Further Reading 45

4 Statistical Systems and the Microcanonical Ensemble 47

4.1 From Probability and Information Theory to Physics 47

4.2 States in Statistical Systems 48

4.3 Ensembles in Statistical Systems 50

4.4 From States to Information 54

4.5 Microcanonical Ensemble: Counting States 59

4.5.1 Discrete Systems 59

4.5.2 Continuous Systems 62

4.5.3 From ¿ ¿ ¿ 64

4.5.4 Classical Ideal Gas 67

4.6 Interactions Between Systems 70

4.6.1 Thermal Interaction 70

4.6.2 Mechanical Interaction 71

4.7 Quasistatic Processes 73

4.7.1 Exact vs. Inexact Differentials 74

4.7.2 Physical Examples 77

4.8 Summary 79

Problems 79

References 85

5 Equilibrium and Temperature 87

5.1 Equilibrium and the Approach to it 87

5.1.1 Equilibrium 87

5.1.2 Irreversible and Reversible Processes 89

5.1.3 Two Systems in Equilibrium 90

5.1.4 Approaching Thermal Equilibrium 93

5.2 Temperature 95

5.3 Properties of Temperature 96

5.3.1 Negative Absolute Temperature 97

5.3.2 Temperature Scales 98

5.4 Summary 101

Problems 101

References 103

6 Thermodynamics: The Laws and the Mathematics 105

6.1 Interactions Between Systems 105

6.1.1 Quasistatic Thermal Interaction 105

6.1.2 The Heat Reservoir 106

6.1.3 General Interactions Between Systems 108

6.1.4 The Entropy in the Ground state 116

6.2 The First Derivatives 119

6.2.1 Heat Capacity 120

6.2.2 Coefficient of Thermal Expansion 125

6.2.3 Isothermal Compressibility 125

6.3 The Legendre Transform and Thermodynamic Potentials 125

6.3.1 Naturally Independent Variables 126

6.3.2 Legendre Transform 127

6.3.3 Thermodynamic Potentials 130

6.3.4 Fundamental Relations and the Equations of State 135

6.4 Derivative Crushing 136

6.5 More About the Classical Ideal Gas 142

6.6 First Derivatives Near Absolute Zero 145

6.7 Empirical Determination of the Entropy and Internal Energy 146

6.8 Summary 150

Problems 150

References 157

7 Applications of Thermodynamics 159

7.1 Adiabatic Expansion 159

7.2 Cooling Gases 162

7.2.1 Free Expansion 162

7.2.2 Throttling (Joule-Thomson) Process 165

7.3 Heat Engines 168

7.3.1 Carnot Cycle 171

7.4 Refrigerators 173

7.5 Summary 175

Problems 175

References 180

Further Reading 180

8 The Canonical Distribution 181

8.1 Restarting Our Study of Systems 181

8.1.1 A as an Isolated System 182

8.1.2 System in Contact with a Heat Reservoir 182

8.2 Connecting to the Microcanonical Ensemble 188

8.2.1 Mean Energy 189

8.2.2 Variance in ¿ 189

8.2.3 Mean Pressure 190

8.3 Thermodynamics and the Canonical Ensemble 191

8.4 Classical Ideal Gas (Yet Again) 193

8.5 Fudged Classical Statistics 196

8.6 Non-ideal Gases 198

8.7 Specified Mean Energy 203

8.8 Summary 204

Problems 205

9 Applications of the Canonical Distribution 211

9.1 Equipartition Theorem 211

9.2 Specific Heat of Solids 213

9.2.1 The Classical Case 214

9.2.2 The Einstein Model 216

9.2.3 A More Realistic Model 218

9.2.4 The Debye Model 220

9.3 Paramagnetism 221

9.4 Introduction to Kinetic Theory 226

9.4.1 Maxwell Velocity Distribution 226

9.4.2 Molecules Striking a Surface 231

9.4.3 Effusion 233

9.5 Summary 234

Problems 234

References 238

10 Phase Transitions and Chemical Equilibrium 241

10.1 Introduction to Phases 241

10.2 Equilibrium Conditions 243

10.2.1 Isolated System 243

10.2.2 A System in Contact with a Heat and Work Reservoir 245

10.3 Phase Equilibrium 247

10.3.1 Phase Diagram of Water 250

10.3.2 Vapor Pressure of an Ideal Gas 251

10.4 From the Equation of State to a Phase Transition 252

10.4.1 Stable Equilibrium Requirements 254

10.4.2 Back to Our Phase Transition 256

10.4.3 Density Fluctuations 262

10.5 Different Phases as Different Substances 263

10.5.1 Systems with Many Components 265

10.5.2 Gibbs-Duhem Relation 266

10.6 Chemical Equilibrium 268

10.7 Chemical Equilibrium Between Ideal Gases 270

10.8 Summary 275

Problems 275

References 281

11 Quantum Statistics 283

11.1 Grand Canonical Ensemble 283

11.1.1 A System in Contact with a Particle Reservoir 283

11.1.2 Connecting ¿ to Thermodynamics 286

11.2 Classical vs. Quantum Statistics 288

11.2.1 Symmetry Requirements 289

11.3 The Occupation Number 294

11.3.1 Maxwell-Boltzmann Distribution Function 295

11.3.2 Photon Distribution Function 297

11.3.3 Bose-Einstein Statistics 298

11.3.4 Fermi-Dirac Statistics 299

11.4 Classical Limit 301

11.4.1 From Quantum States to Classical Phase Space 304

11.5 Quantum Partition Function in the Classical Limit 307

11.6 Vapor Pressure of a Solid 308

11.6.1 General Expression for the Vapor Pressure 309

11.6.2 Vapor Pressure of a Solid in the Einstein Model 311

11.7 Partition Function of Ideal Polyatomic Molecules 312

11.7.1 Translational Motion of the Center of Mass 313

11.7.2 Electronic States 314

11.7.3 Rotation 314

11.7.4 Vibration 316

11.7.5 Molar Specific Heat of a Diatomic Molecule 317

11.8 Summary 317

Problems 318

Reference 320

12 Applications of Quantum Statistics 321

12.1 Blackbody Radiation 321

12.1.1 From E&M to Photons 321

12.1.2 Photon Gas 323

12.1.3 Radiation Pressure 326

12.1.4 Radiation from a Hot Object 327

12.2 Bose-Einstein Condensation 329

12.3 Fermi Gas 333

12.4 Summary 337

Problems 338

References 340

13 Black Hole Thermodynamics 341

13.1 Brief Introduction to General Relativity 341

13.1.1 Geometrized Units 341

13.1.2 Black Holes 343

13.1.3 Hawking Radiation 345

13.2 Black Hole Thermodynamics 345

13.2.1 Black Hole Heat Engine 346

13.2.2 The Math of Black Hole Thermodynamics 348

13.3 Heat Capacity of a Black Hole 351

13.4 Summary 352

Problems 352

References 353

Appendix A Important Constants and Units 355

References 357

Appendix B Periodic Table of Elements 359

Appendix C Gaussian Integrals 361

Appendix D Volumes in n-Dimensions 363

Appendix E Partial Derivatives in Thermodynamics 367

Reference 371

Index 373

Details
Erscheinungsjahr: 2024
Fachbereich: Thermodynamik
Genre: Importe, Physik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Preface xiiiAcknowledgments xvAbout the Companion Website xvii1 Introduction 11.1 What is Thermodynamics? 21.2 What Is Statistical Mechanics? 51.3 Our Approach 62 Introduction to Probability Theory 92.1 Understanding Probability 92.2 Randomness
Fairness
ISBN-13: 9781394162277
ISBN-10: 1394162278
Sprache: Englisch
Einband: Gebunden
Autor: Aubin, Christopher
Hersteller: John Wiley & Sons Inc
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 257 x 181 x 26 mm
Von/Mit: Christopher Aubin
Erscheinungsdatum: 07.02.2024
Gewicht: 0,898 kg
Artikel-ID: 128494052
Sicherheitshinweis