Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
44,99 €*
Versandkostenfrei per Post / DHL
Lieferzeit 4-7 Werktage
Kategorien:
Beschreibung
Das Buch enthält eine kompakte Darstellung wichtiger Elemente der nichtlinearen Dynamik, die von Attraktoren, invarianten Mannigfaltigkeiten und der Stabilität des Orbits in zeitkontinuierlichen und zeitdiskreten Bifurkationen bis hin zu Shifts, Hufeisen, invarianten Maßen, Entropien und Dimensionen in dynamischen Systemen reicht. Die wichtigsten Routen dynamischer Systeme ins Chaos werden vorgestellt.
Das Buch enthält eine kompakte Darstellung wichtiger Elemente der nichtlinearen Dynamik, die von Attraktoren, invarianten Mannigfaltigkeiten und der Stabilität des Orbits in zeitkontinuierlichen und zeitdiskreten Bifurkationen bis hin zu Shifts, Hufeisen, invarianten Maßen, Entropien und Dimensionen in dynamischen Systemen reicht. Die wichtigsten Routen dynamischer Systeme ins Chaos werden vorgestellt.
Inhaltsverzeichnis
I Dynamische Systeme.- 1 Definition des dynamischen Systems.- 2 Typen der Bewegung eines dynamischen Systems.- 3 Invariante Mengen. Grenzmengen. Zentrum.- 4 Volumenänderung.- 5 Absorbierende Mengen und Attraktoren.- 6 Äquivalenz dynamischer Systeme.- 7 Hyperbolizität periodischer Orbits.- 8 Stabile und instabile Mannigfaltigkeiten.- 9 Orbitale Stabilität und Lyapunov-Stabilität von Bewegungen.- 10 Stabilität von Ruhelagen dynamischer Systeme.- 11 Stabilität periodischer Bewegungen.- 12 Periodische Punkte von Abbildungen.- 13 Existenz periodischer Orbits bei Differentialgleichungen.- 14 Zur Existenz rekurrenter und fast-perodischer Orbits.- 15 Strukturelle Stabilität.- II Bifurkationen in Morse-Smale-Systemen.- 16 Reduktion auf die Zentrumsmannigfaltigkeit.- 17 Bifurkationen nahe einer Ruhelage.- 18 Bifurkationen in einparametrigen Differentialgleichungen.- 19 Bifurkationen in zweiparametrigen Differentialgleichungen.- 20 Bifurkationen der Abspaltung periodischer Orbits.- III Chaotische dynamische Systeme.- 21 Shifts, Hufeisen und transversale homokline Punkte.- 22 Invariante Maße, Ergodizität und Mischen.- 23 Lyapunov-Exponenten.- 24 Entropien und Druck.- 25 Dimensionen.- 26 Übergänge zum Chaos.- Al Metrische Räume, Borel-Mengen und Maße.- A2 Jordansche Normalformen von Matrizen.- A3 Assoziierte Matrizen, äußere Produkte und äußere Potenzen....- Aufgaben.- Literatur.
Details
Erscheinungsjahr: | 1996 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte |
Inhalt: | 252 S. |
ISBN-13: | 9783815420904 |
ISBN-10: | 3815420903 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Reitmann, Volker |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte |
Verantwortliche Person für die EU: | Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, D-65189 Wiesbaden, juergen.hartmann@springer.com |
Maße: | 244 x 170 x 15 mm |
Von/Mit: | Volker Reitmann |
Erscheinungsdatum: | 01.01.1996 |
Gewicht: | 0,448 kg |
Inhaltsverzeichnis
I Dynamische Systeme.- 1 Definition des dynamischen Systems.- 2 Typen der Bewegung eines dynamischen Systems.- 3 Invariante Mengen. Grenzmengen. Zentrum.- 4 Volumenänderung.- 5 Absorbierende Mengen und Attraktoren.- 6 Äquivalenz dynamischer Systeme.- 7 Hyperbolizität periodischer Orbits.- 8 Stabile und instabile Mannigfaltigkeiten.- 9 Orbitale Stabilität und Lyapunov-Stabilität von Bewegungen.- 10 Stabilität von Ruhelagen dynamischer Systeme.- 11 Stabilität periodischer Bewegungen.- 12 Periodische Punkte von Abbildungen.- 13 Existenz periodischer Orbits bei Differentialgleichungen.- 14 Zur Existenz rekurrenter und fast-perodischer Orbits.- 15 Strukturelle Stabilität.- II Bifurkationen in Morse-Smale-Systemen.- 16 Reduktion auf die Zentrumsmannigfaltigkeit.- 17 Bifurkationen nahe einer Ruhelage.- 18 Bifurkationen in einparametrigen Differentialgleichungen.- 19 Bifurkationen in zweiparametrigen Differentialgleichungen.- 20 Bifurkationen der Abspaltung periodischer Orbits.- III Chaotische dynamische Systeme.- 21 Shifts, Hufeisen und transversale homokline Punkte.- 22 Invariante Maße, Ergodizität und Mischen.- 23 Lyapunov-Exponenten.- 24 Entropien und Druck.- 25 Dimensionen.- 26 Übergänge zum Chaos.- Al Metrische Räume, Borel-Mengen und Maße.- A2 Jordansche Normalformen von Matrizen.- A3 Assoziierte Matrizen, äußere Produkte und äußere Potenzen....- Aufgaben.- Literatur.
Details
Erscheinungsjahr: | 1996 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte |
Inhalt: | 252 S. |
ISBN-13: | 9783815420904 |
ISBN-10: | 3815420903 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Reitmann, Volker |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte |
Verantwortliche Person für die EU: | Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, D-65189 Wiesbaden, juergen.hartmann@springer.com |
Maße: | 244 x 170 x 15 mm |
Von/Mit: | Volker Reitmann |
Erscheinungsdatum: | 01.01.1996 |
Gewicht: | 0,448 kg |
Sicherheitshinweis