Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Python for Data Analysis
Data Wrangling with Pandas, NumPy, and Jupyter
Taschenbuch von Wes McKinney
Sprache: Englisch

73,85 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung

Get the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.10 and pandas 1.4, the third edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, and Jupyter in the process.

Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It's ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub.

  • • Use the Jupyter notebook and IPython shell for exploratory computing • Learn basic and advanced features in NumPy • Get started with data analysis tools in the pandas library • Use flexible tools to load, clean, transform, merge, and reshape data • Create informative visualizations with matplotlib • Apply the pandas groupby facility to slice, dice, and summarize datasets • Analyze and manipulate regular and irregular time series data • Learn how to solve real-world data analysis problems with thorough, detailed examples

Get the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.10 and pandas 1.4, the third edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, and Jupyter in the process.

Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It's ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub.

  • • Use the Jupyter notebook and IPython shell for exploratory computing • Learn basic and advanced features in NumPy • Get started with data analysis tools in the pandas library • Use flexible tools to load, clean, transform, merge, and reshape data • Create informative visualizations with matplotlib • Apply the pandas groupby facility to slice, dice, and summarize datasets • Analyze and manipulate regular and irregular time series data • Learn how to solve real-world data analysis problems with thorough, detailed examples
Über den Autor
Wes McKinney is a Nashville-based software developer and entrepreneur. After finishing his undergraduate degree in mathematics at MIT in 2007, he went on to do quantitative finance work at AQR Capital Management in Greenwich, CT. Frustrated by cumbersome data analysis tools, he learned Python and started building what would later become the pandas project. He's now an active member of the Python data community and is an advocate for the use of Python in data analysis, finance, and statistical computing applications.

Wes was later the cofounder and CEO of DataPad, whose technology assets and team were acquired by Cloudera in 2014. He has since become involved in big data technology, joining the Project Management Committees for the Apache Arrow and Apache Parquet projects in the Apache Software Foundation. In 2018, he founded Ursa Labs, a not-for-profit organization focused Apache Arrow development, in partnership with RStudio and Two Sigma Investments. In 2021, he cofounded technology startup Voltron Data, where he currently works as the Chief Technology Officer.
Details
Erscheinungsjahr: 2022
Fachbereich: Programmiersprachen
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781098104030
ISBN-10: 109810403X
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: McKinney, Wes
Auflage: 3rd Edition
Hersteller: O'Reilly Media
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 232 x 176 x 31 mm
Von/Mit: Wes McKinney
Erscheinungsdatum: 30.09.2022
Gewicht: 0,996 kg
Artikel-ID: 121341422
Über den Autor
Wes McKinney is a Nashville-based software developer and entrepreneur. After finishing his undergraduate degree in mathematics at MIT in 2007, he went on to do quantitative finance work at AQR Capital Management in Greenwich, CT. Frustrated by cumbersome data analysis tools, he learned Python and started building what would later become the pandas project. He's now an active member of the Python data community and is an advocate for the use of Python in data analysis, finance, and statistical computing applications.

Wes was later the cofounder and CEO of DataPad, whose technology assets and team were acquired by Cloudera in 2014. He has since become involved in big data technology, joining the Project Management Committees for the Apache Arrow and Apache Parquet projects in the Apache Software Foundation. In 2018, he founded Ursa Labs, a not-for-profit organization focused Apache Arrow development, in partnership with RStudio and Two Sigma Investments. In 2021, he cofounded technology startup Voltron Data, where he currently works as the Chief Technology Officer.
Details
Erscheinungsjahr: 2022
Fachbereich: Programmiersprachen
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781098104030
ISBN-10: 109810403X
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: McKinney, Wes
Auflage: 3rd Edition
Hersteller: O'Reilly Media
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 232 x 176 x 31 mm
Von/Mit: Wes McKinney
Erscheinungsdatum: 30.09.2022
Gewicht: 0,996 kg
Artikel-ID: 121341422
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte