Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
73,85 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Whether based on academic theories or discovered empirically by humans and machines, all financial models are at the mercy of modeling errors that can be mitigated but not eliminated. Probabilistic ML technologies are based on a simple and intuitive definition of probability and the rigorous calculus of probability theory. Unlike conventional AI systems, probabilistic machine learning (ML) systems treat errors and uncertainties as features, not bugs. They quantify uncertainty generated from inexact model inputs and outputs as probability distributions, not point estimates. Most importantly, these systems are capable of forewarning us when their inferences and predictions are no longer useful in the current market environment. These ML systems provide realistic support for financial decision-making and risk management in the face of uncertainty and incomplete information. Probabilistic ML is the next generation ML framework and technology for AI-powered financial and investing systems for many reasons. They are generative ensembles that learn continually from small and noisy financial datasets while seamlessly enabling probabilistic inference, prediction and counterfactual reasoning. By moving away from flawed statistical methodologies (and a restrictive conventional view of probability as a limiting frequency), you can embrace an intuitive view of probability as logic within an axiomatic statistical framework that comprehensively and successfully quantifies uncertainty. This book shows you why and how to make that transition.
Whether based on academic theories or discovered empirically by humans and machines, all financial models are at the mercy of modeling errors that can be mitigated but not eliminated. Probabilistic ML technologies are based on a simple and intuitive definition of probability and the rigorous calculus of probability theory. Unlike conventional AI systems, probabilistic machine learning (ML) systems treat errors and uncertainties as features, not bugs. They quantify uncertainty generated from inexact model inputs and outputs as probability distributions, not point estimates. Most importantly, these systems are capable of forewarning us when their inferences and predictions are no longer useful in the current market environment. These ML systems provide realistic support for financial decision-making and risk management in the face of uncertainty and incomplete information. Probabilistic ML is the next generation ML framework and technology for AI-powered financial and investing systems for many reasons. They are generative ensembles that learn continually from small and noisy financial datasets while seamlessly enabling probabilistic inference, prediction and counterfactual reasoning. By moving away from flawed statistical methodologies (and a restrictive conventional view of probability as a limiting frequency), you can embrace an intuitive view of probability as logic within an axiomatic statistical framework that comprehensively and successfully quantifies uncertainty. This book shows you why and how to make that transition.
Über den Autor
Deepak Kanungo is an algorithmic derivatives trader, instructor, and CEO of Hedged Capital LLC, an AI-powered proprietary trading company. Since 2019, Deepak has taught tens of thousands of O'Reilly Media subscribers worldwide the concepts, processes, and machine learning technologies for algorithmic trading, investing and finance with Python.
In 2005, long before machine learning was an industry buzzword, Deepak invented a probabilistic machine learning method and software system for managing the risks and returns of project portfolios. It is a unique probabilistic framework that has been cited by IBM and Accenture, among others.
Previously, Deepak was a financial advisor at Morgan Stanley, a Silicon Valley fintech entrepreneur, a director in the Global Planning Department at Mastercard International and a senior analyst with Diamond Technology Partners. He was educated at Princeton University (astrophysics) and The London School of Economics (finance and information systems).
In 2005, long before machine learning was an industry buzzword, Deepak invented a probabilistic machine learning method and software system for managing the risks and returns of project portfolios. It is a unique probabilistic framework that has been cited by IBM and Accenture, among others.
Previously, Deepak was a financial advisor at Morgan Stanley, a Silicon Valley fintech entrepreneur, a director in the Global Planning Department at Mastercard International and a senior analyst with Diamond Technology Partners. He was educated at Princeton University (astrophysics) and The London School of Economics (finance and information systems).
Details
Erscheinungsjahr: | 2023 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9781492097679 |
ISBN-10: | 1492097675 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Kanungo, Deepak K. |
Hersteller: | O'Reilly Media |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 231 x 175 x 16 mm |
Von/Mit: | Deepak K. Kanungo |
Erscheinungsdatum: | 25.08.2023 |
Gewicht: | 0,48 kg |
Über den Autor
Deepak Kanungo is an algorithmic derivatives trader, instructor, and CEO of Hedged Capital LLC, an AI-powered proprietary trading company. Since 2019, Deepak has taught tens of thousands of O'Reilly Media subscribers worldwide the concepts, processes, and machine learning technologies for algorithmic trading, investing and finance with Python.
In 2005, long before machine learning was an industry buzzword, Deepak invented a probabilistic machine learning method and software system for managing the risks and returns of project portfolios. It is a unique probabilistic framework that has been cited by IBM and Accenture, among others.
Previously, Deepak was a financial advisor at Morgan Stanley, a Silicon Valley fintech entrepreneur, a director in the Global Planning Department at Mastercard International and a senior analyst with Diamond Technology Partners. He was educated at Princeton University (astrophysics) and The London School of Economics (finance and information systems).
In 2005, long before machine learning was an industry buzzword, Deepak invented a probabilistic machine learning method and software system for managing the risks and returns of project portfolios. It is a unique probabilistic framework that has been cited by IBM and Accenture, among others.
Previously, Deepak was a financial advisor at Morgan Stanley, a Silicon Valley fintech entrepreneur, a director in the Global Planning Department at Mastercard International and a senior analyst with Diamond Technology Partners. He was educated at Princeton University (astrophysics) and The London School of Economics (finance and information systems).
Details
Erscheinungsjahr: | 2023 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9781492097679 |
ISBN-10: | 1492097675 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Kanungo, Deepak K. |
Hersteller: | O'Reilly Media |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 231 x 175 x 16 mm |
Von/Mit: | Deepak K. Kanungo |
Erscheinungsdatum: | 25.08.2023 |
Gewicht: | 0,48 kg |
Sicherheitshinweis