26,40 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Learn to:
- Use optics principles and devices properly
- Avoid common mistakes in working with typical optics problems
- Determine image locations and characteristics with simple calculations
- Grasp the basic concepts behind lasers and laser applications
An illuminating exploration of optics and optical technologies
Get turned on to the study of light with this friendly guide to the world of optics. Discover how the fundamentals of optical technologies help brighten your everyday life ? from the common table lamp to more complex devices such as cellphones, cameras, x-ray machines, 3-D TVs, and more. With the enlightening facts presented in this book, you'll never feel left in the dark in your optics course.
- Optics that are high in fiber ? get a grasp on the essentials behind fiber-optic cables for high-speed, long-distance communications
- Making the world look like you want it to ? learn how to calculate the location of an image and determine the image's characteristics
- Shed light on light ? find out how light allows you to see, transmit data, cut things, and control electrical circuits
- Catch the waves ? understand the wave property of light and how waves are used to see things you can't see with your naked eye
- Lasers pointing here and there ? discover the basic idea behind the laser and some of its uses in medicine and the military
- Look far away from Earth ? take a look at the different types of telescopes and what you can do with them
Open the book and find:
- The differences among incandescent and fluorescent light bulbs and diodes
- Tips for knowing what you can and can't see in CAT scans, PET scans, MRI scans, NMR scans, and x-ray pictures
- Why you see things in 3-D
- The principles for testing eyesight and prescribing corrective eyeglass lenses
- The basic ideas involved in making a laser
- The behavior and properties of visible, infrared, and ultraviolet light
Learn to:
- Use optics principles and devices properly
- Avoid common mistakes in working with typical optics problems
- Determine image locations and characteristics with simple calculations
- Grasp the basic concepts behind lasers and laser applications
An illuminating exploration of optics and optical technologies
Get turned on to the study of light with this friendly guide to the world of optics. Discover how the fundamentals of optical technologies help brighten your everyday life ? from the common table lamp to more complex devices such as cellphones, cameras, x-ray machines, 3-D TVs, and more. With the enlightening facts presented in this book, you'll never feel left in the dark in your optics course.
- Optics that are high in fiber ? get a grasp on the essentials behind fiber-optic cables for high-speed, long-distance communications
- Making the world look like you want it to ? learn how to calculate the location of an image and determine the image's characteristics
- Shed light on light ? find out how light allows you to see, transmit data, cut things, and control electrical circuits
- Catch the waves ? understand the wave property of light and how waves are used to see things you can't see with your naked eye
- Lasers pointing here and there ? discover the basic idea behind the laser and some of its uses in medicine and the military
- Look far away from Earth ? take a look at the different types of telescopes and what you can do with them
Open the book and find:
- The differences among incandescent and fluorescent light bulbs and diodes
- Tips for knowing what you can and can't see in CAT scans, PET scans, MRI scans, NMR scans, and x-ray pictures
- Why you see things in 3-D
- The principles for testing eyesight and prescribing corrective eyeglass lenses
- The basic ideas involved in making a laser
- The behavior and properties of visible, infrared, and ultraviolet light
Galen Duree, Jr., PhD, is Professor of Physics and Optical Engineering at Rose-Hulman Institute of Technology in Indiana, where he is also the Director of the Center for Applied Optics Studies. Duree jointly established the Ultrashort Pulse Laser Laboratory at RHIT and continues to work with the Navy.
Introduction 1
About This Book 1
Conventions Used in This Book 2
What You're Not to Read 3
Foolish Assumptions 3
How This Book Is Organized 3
Part I: Getting Up to Speed on Optics Fundamentals 4
Part II: Geometrical Optics: Working with More Than One Ray 4
Part III: Physical Optics: Using the Light Wave 4
Part IV: Optical Instrumentation: Putting Light to Practical Use 4
Part V: Hybrids: Exploring More Complicated Optical Systems 5
Part VI: More Than Just Images: Getting into Advanced Optics 5
Part VII: The Part of Tens 5
Icons Used in This Book 5
Where to Go from Here 6
Part I: Getting Up to Speed on Optics Fundamentals 7
Chapter 1: Introducing Optics, the Science of Light 9
Illuminating the Properties of Light 9
Creating images with the particle property of light 10
Harnessing interference and diffraction with the wave property of light 10
Using Optics to Your Advantage: Basic Applications 11
Expanding Your Understanding of Optics 12
Considering complicated applications 12
Adding advanced optics 13
Paving the Way: Contributions to Optics 13
Chapter 2: Brushing Up on Optics-Related Math and Physics 15
Working with Physical Measurements 15
Refreshing Your Mathematics Memory 16
Juggling variables with algebra 16
Finding lengths and angles with trigonometry 18
Exploring the unknown with basic matrix algebra 21
Reviewing Wave Physics 26
The wave function: Understanding its features and variables 26
Medium matters: Working with mechanical waves 28
Using wavefronts in optics 29
Chapter 3: A Little Light Study: Reviewing Light Basics 31
Developing Early Ideas about the Nature of Light 31
Pondering the particle theory of light 32
Walking through the wave theory of light 32
Taking a Closer Look at Light Waves 33
If light is a wave, what's waving? Understanding electromagnetic radiation 33
Dealing with wavelengths and frequency: The electromagnetic spectrum 36
Calculating the intensity and power of light 36
Einstein's Revolutionary Idea about Light: Quanta 37
Uncovering the photoelectric effect and the problem with light waves 38
Merging wave and particle properties: The photon 39
Let There Be Light: Understanding the Three Processes that Produce Light 40
Atomic transitions 40
Accelerated charged particles 41
Matter-antimatter annihilation 42
Introducing the Three Fields of Study within Optics 42
Geometrical optics: Studying light as a collection of rays 42
Physical optics: Exploring the wave property of light 43
Quantum optics: Investigating small numbers of photons 43
Chapter 4: Understanding How to Direct Where Light Goes 45
Reflection: Bouncing Light Off Surfaces 45
Determining light's orientation 46
Understanding the role surface plays in specular and diffuse reflection 47
Appreciating the practical difference between reflection and scattering 48
Refraction: Bending Light as It Goes Through a Surface 50
Making light slow down: Determining the index of refraction 50
Calculating how much the refracted ray bends: Snell's law 51
Bouncing light back with refraction: Total internal reflection 52
Varying the refractive index with dispersion 53
Birefringence: Working with two indices of refraction for the same wavelength 54
Diffraction: Bending Light around an Obstacle 55
Part II: Geometrical Optics: Working with More Than One Ray 57
Chapter 5: Forming Images with Multiple Rays of Light 59
The Simplest Method: Using Shadows to Create Images 60
Forming Images Without a Lens: The Pinhole Camera Principle 62
Eyeing Basic Image Characteristics for Optical System Design 63
The type of image created: Real or virtual 63
The orientation of the image relative to the object 63
The size of the image relative to the object 64
Zeroing In on the Focal Point and Focal Length 65
Determining the focal point and length 65
Differentiating real and virtual focal points 66
Chapter 6: Imaging with Mirrors: Bouncing Many Rays Around 69
Keeping it Simple with Flat Mirrors 69
Changing Shape with Concave and Convex Mirrors 70
Getting a handle on the mirror equation and sign conventions 71
Working with concave mirrors 72
Exploring convex mirrors 74
Chapter 7: Imaging with Refraction: Bending Many Rays at the Same Time 77
Locating the Image Produced by a Refracting Surface 78
Calculating where an image will appear 78
Solving single-surface imaging problems 80
Working with more than one refracting surface 83
Looking at Lenses: Two Refracting Surfaces Stuck Close Together 85
Designing a lens: The lens maker's formula 85
Taking a closer look at convex and concave lenses 88
Finding the image location and characteristics for multiple lenses 89
D'oh, fuzzy again! Aberrations 91
Part III: Physical Optics: Using the Light Wave 95
Chapter 8: Optical Polarization: Describing the Wiggling Electric Field in Light 97
Describing Optical Polarization 97
Focusing on the electric field's alignment 98
Polarization: Looking at the plane of the electric field 99
Examining the Different Types of Polarization 100
Linear, circular, or elliptical: Following the vector path 100
Random or unpolarized: Looking at changing or mixed states 107
Producing Polarized Light 108
Selective absorption: No passing unless you get in line 108
Scattering off small particles 109
Reflection: Aligning parallel to the surface 110
Birefringence: Splitting in two 111
Chapter 9: Changing Optical Polarization 113
Discovering Devices that Can Change Optical Polarization 113
Dichroic filters: Changing the axis with linear polarizers 114
Birefringent materials: Changing or rotating the polarization state 117
Rotating light with optically active materials 121
Jones Vectors: Calculating the Change in Polarization 121
Representing the polarization state with Jones vectors 121
Jones matrices: Showing how devices will change polarization 124
Matrix multiplication: Predicting how devices will affect incident light 126
Chapter 10: Calculating Reflected and Transmitted Light with Fresnel Equations 131
Determining the Amount of Reflected and Transmitted Light 131
Transverse modes: Describing the orientation of the fields 132
Defining the reflection and transmission coefficients 133
Using more powerful values: Reflectance and transmittance 134
The Fresnel equations: Finding how much incident light is reflected or transmitted 135
Surveying Special Situations Involving Reflection and the Fresnel Equations 136
Striking at Brewster's angle 137
Reflectance at normal incidence: Coming in at 0 degrees 137
Reflectance at glancing incidence: Striking at 90 degrees 138
Exploring internal reflection and total internal reflection 138
Frustrated total internal reflection: Dealing with the evanescent wave 139
Chapter 11: Running Optical Interference: Not Always a Bad Thing 143
Describing Optical Interference 143
On the fringe: Looking at constructive and destructive interference 144
Noting the conditions required to see optical interference 145
Perusing Practical Interference Devices: Interferometers 146
Wavefront-splitting interferometers 146
Amplitude-splitting interferometers 151
Accounting for Other Amplitude-Splitting Arrangements 154
Thin film interference 154
Newton's rings 157
Fabry-Perot interferometer 158
Chapter 12: Diffraction: Light's Bending around Obstacles 161
From Near and Far: Understanding Two Types of Diffraction 162
Defining the types of diffraction 162
Determining which type of diffraction you see 163
Going the Distance: Special Cases of Fraunhofer Diffraction 164
Fraunhofer diffraction from a circular aperture 165
Fraunhofer diffraction from slits 167
Getting Close: Special Cases of Fresnel Diffraction 172
Fresnel diffraction from a rectangular aperture 173
Fresnel diffraction from a circular aperture 174
Fresnel diffraction from a solid disk 175
Diffraction from Fresnel zone plates 175
Part IV: Optical Instrumentation: Putting Light to Practical Use 179
Chapter 13: Lens Systems: Looking at Things the Way You Want to See Them 181
Your Most Important Optical System: The Human Eye 181
Understanding the structure of the human eye 182
Accommodation: Flexing some muscles to change the focus 183
Using Lens Systems to Correct Vision Problems 185
Corrective lenses: Looking at lens shape and optical power 185
Correcting nearsightedness, farsightedness, and astigmatism 186
Enhancing the Human Eye with Lens Systems 190
Magnifying glasses: Enlarging images with the simple magnifier 191
Seeing small objects with the compound microscope 192
Going the distance with the simple telescope 194
Jumping to the big screen: The optical projector 195
Chapter 14: Exploring Light Sources: Getting Light Where You Want It 197
Shedding Light on Common Household Bulbs 198
Popular bulb types and how they work 198
Reading electrical bulb rates 201
...Erscheinungsjahr: | 2011 |
---|---|
Fachbereich: | Elektrizität/Magnetismus/Optik |
Genre: | Importe, Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
Introduction 1Part I: Getting Up to Speed on Optics Fundamentals 7Chapter 1: Introducing Optics
the Science of Light 9Chapter 2: Brushing Up on Optics-Related Math and Physics 15Chapter 3: A Little Light Study: Reviewing Light Basics 31Chapter 4: Unders |
ISBN-13: | 9781118017234 |
ISBN-10: | 1118017234 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Duree, Galen C |
Hersteller: |
Wiley
John Wiley & Sons |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 235 x 191 x 20 mm |
Von/Mit: | Galen C Duree |
Erscheinungsdatum: | 02.08.2011 |
Gewicht: | 0,676 kg |
Galen Duree, Jr., PhD, is Professor of Physics and Optical Engineering at Rose-Hulman Institute of Technology in Indiana, where he is also the Director of the Center for Applied Optics Studies. Duree jointly established the Ultrashort Pulse Laser Laboratory at RHIT and continues to work with the Navy.
Introduction 1
About This Book 1
Conventions Used in This Book 2
What You're Not to Read 3
Foolish Assumptions 3
How This Book Is Organized 3
Part I: Getting Up to Speed on Optics Fundamentals 4
Part II: Geometrical Optics: Working with More Than One Ray 4
Part III: Physical Optics: Using the Light Wave 4
Part IV: Optical Instrumentation: Putting Light to Practical Use 4
Part V: Hybrids: Exploring More Complicated Optical Systems 5
Part VI: More Than Just Images: Getting into Advanced Optics 5
Part VII: The Part of Tens 5
Icons Used in This Book 5
Where to Go from Here 6
Part I: Getting Up to Speed on Optics Fundamentals 7
Chapter 1: Introducing Optics, the Science of Light 9
Illuminating the Properties of Light 9
Creating images with the particle property of light 10
Harnessing interference and diffraction with the wave property of light 10
Using Optics to Your Advantage: Basic Applications 11
Expanding Your Understanding of Optics 12
Considering complicated applications 12
Adding advanced optics 13
Paving the Way: Contributions to Optics 13
Chapter 2: Brushing Up on Optics-Related Math and Physics 15
Working with Physical Measurements 15
Refreshing Your Mathematics Memory 16
Juggling variables with algebra 16
Finding lengths and angles with trigonometry 18
Exploring the unknown with basic matrix algebra 21
Reviewing Wave Physics 26
The wave function: Understanding its features and variables 26
Medium matters: Working with mechanical waves 28
Using wavefronts in optics 29
Chapter 3: A Little Light Study: Reviewing Light Basics 31
Developing Early Ideas about the Nature of Light 31
Pondering the particle theory of light 32
Walking through the wave theory of light 32
Taking a Closer Look at Light Waves 33
If light is a wave, what's waving? Understanding electromagnetic radiation 33
Dealing with wavelengths and frequency: The electromagnetic spectrum 36
Calculating the intensity and power of light 36
Einstein's Revolutionary Idea about Light: Quanta 37
Uncovering the photoelectric effect and the problem with light waves 38
Merging wave and particle properties: The photon 39
Let There Be Light: Understanding the Three Processes that Produce Light 40
Atomic transitions 40
Accelerated charged particles 41
Matter-antimatter annihilation 42
Introducing the Three Fields of Study within Optics 42
Geometrical optics: Studying light as a collection of rays 42
Physical optics: Exploring the wave property of light 43
Quantum optics: Investigating small numbers of photons 43
Chapter 4: Understanding How to Direct Where Light Goes 45
Reflection: Bouncing Light Off Surfaces 45
Determining light's orientation 46
Understanding the role surface plays in specular and diffuse reflection 47
Appreciating the practical difference between reflection and scattering 48
Refraction: Bending Light as It Goes Through a Surface 50
Making light slow down: Determining the index of refraction 50
Calculating how much the refracted ray bends: Snell's law 51
Bouncing light back with refraction: Total internal reflection 52
Varying the refractive index with dispersion 53
Birefringence: Working with two indices of refraction for the same wavelength 54
Diffraction: Bending Light around an Obstacle 55
Part II: Geometrical Optics: Working with More Than One Ray 57
Chapter 5: Forming Images with Multiple Rays of Light 59
The Simplest Method: Using Shadows to Create Images 60
Forming Images Without a Lens: The Pinhole Camera Principle 62
Eyeing Basic Image Characteristics for Optical System Design 63
The type of image created: Real or virtual 63
The orientation of the image relative to the object 63
The size of the image relative to the object 64
Zeroing In on the Focal Point and Focal Length 65
Determining the focal point and length 65
Differentiating real and virtual focal points 66
Chapter 6: Imaging with Mirrors: Bouncing Many Rays Around 69
Keeping it Simple with Flat Mirrors 69
Changing Shape with Concave and Convex Mirrors 70
Getting a handle on the mirror equation and sign conventions 71
Working with concave mirrors 72
Exploring convex mirrors 74
Chapter 7: Imaging with Refraction: Bending Many Rays at the Same Time 77
Locating the Image Produced by a Refracting Surface 78
Calculating where an image will appear 78
Solving single-surface imaging problems 80
Working with more than one refracting surface 83
Looking at Lenses: Two Refracting Surfaces Stuck Close Together 85
Designing a lens: The lens maker's formula 85
Taking a closer look at convex and concave lenses 88
Finding the image location and characteristics for multiple lenses 89
D'oh, fuzzy again! Aberrations 91
Part III: Physical Optics: Using the Light Wave 95
Chapter 8: Optical Polarization: Describing the Wiggling Electric Field in Light 97
Describing Optical Polarization 97
Focusing on the electric field's alignment 98
Polarization: Looking at the plane of the electric field 99
Examining the Different Types of Polarization 100
Linear, circular, or elliptical: Following the vector path 100
Random or unpolarized: Looking at changing or mixed states 107
Producing Polarized Light 108
Selective absorption: No passing unless you get in line 108
Scattering off small particles 109
Reflection: Aligning parallel to the surface 110
Birefringence: Splitting in two 111
Chapter 9: Changing Optical Polarization 113
Discovering Devices that Can Change Optical Polarization 113
Dichroic filters: Changing the axis with linear polarizers 114
Birefringent materials: Changing or rotating the polarization state 117
Rotating light with optically active materials 121
Jones Vectors: Calculating the Change in Polarization 121
Representing the polarization state with Jones vectors 121
Jones matrices: Showing how devices will change polarization 124
Matrix multiplication: Predicting how devices will affect incident light 126
Chapter 10: Calculating Reflected and Transmitted Light with Fresnel Equations 131
Determining the Amount of Reflected and Transmitted Light 131
Transverse modes: Describing the orientation of the fields 132
Defining the reflection and transmission coefficients 133
Using more powerful values: Reflectance and transmittance 134
The Fresnel equations: Finding how much incident light is reflected or transmitted 135
Surveying Special Situations Involving Reflection and the Fresnel Equations 136
Striking at Brewster's angle 137
Reflectance at normal incidence: Coming in at 0 degrees 137
Reflectance at glancing incidence: Striking at 90 degrees 138
Exploring internal reflection and total internal reflection 138
Frustrated total internal reflection: Dealing with the evanescent wave 139
Chapter 11: Running Optical Interference: Not Always a Bad Thing 143
Describing Optical Interference 143
On the fringe: Looking at constructive and destructive interference 144
Noting the conditions required to see optical interference 145
Perusing Practical Interference Devices: Interferometers 146
Wavefront-splitting interferometers 146
Amplitude-splitting interferometers 151
Accounting for Other Amplitude-Splitting Arrangements 154
Thin film interference 154
Newton's rings 157
Fabry-Perot interferometer 158
Chapter 12: Diffraction: Light's Bending around Obstacles 161
From Near and Far: Understanding Two Types of Diffraction 162
Defining the types of diffraction 162
Determining which type of diffraction you see 163
Going the Distance: Special Cases of Fraunhofer Diffraction 164
Fraunhofer diffraction from a circular aperture 165
Fraunhofer diffraction from slits 167
Getting Close: Special Cases of Fresnel Diffraction 172
Fresnel diffraction from a rectangular aperture 173
Fresnel diffraction from a circular aperture 174
Fresnel diffraction from a solid disk 175
Diffraction from Fresnel zone plates 175
Part IV: Optical Instrumentation: Putting Light to Practical Use 179
Chapter 13: Lens Systems: Looking at Things the Way You Want to See Them 181
Your Most Important Optical System: The Human Eye 181
Understanding the structure of the human eye 182
Accommodation: Flexing some muscles to change the focus 183
Using Lens Systems to Correct Vision Problems 185
Corrective lenses: Looking at lens shape and optical power 185
Correcting nearsightedness, farsightedness, and astigmatism 186
Enhancing the Human Eye with Lens Systems 190
Magnifying glasses: Enlarging images with the simple magnifier 191
Seeing small objects with the compound microscope 192
Going the distance with the simple telescope 194
Jumping to the big screen: The optical projector 195
Chapter 14: Exploring Light Sources: Getting Light Where You Want It 197
Shedding Light on Common Household Bulbs 198
Popular bulb types and how they work 198
Reading electrical bulb rates 201
...Erscheinungsjahr: | 2011 |
---|---|
Fachbereich: | Elektrizität/Magnetismus/Optik |
Genre: | Importe, Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
Introduction 1Part I: Getting Up to Speed on Optics Fundamentals 7Chapter 1: Introducing Optics
the Science of Light 9Chapter 2: Brushing Up on Optics-Related Math and Physics 15Chapter 3: A Little Light Study: Reviewing Light Basics 31Chapter 4: Unders |
ISBN-13: | 9781118017234 |
ISBN-10: | 1118017234 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Duree, Galen C |
Hersteller: |
Wiley
John Wiley & Sons |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 235 x 191 x 20 mm |
Von/Mit: | Galen C Duree |
Erscheinungsdatum: | 02.08.2011 |
Gewicht: | 0,676 kg |