Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Measure, Integration & Real Analysis
Buch von Sheldon Axler
Sprache: Englisch

53,49 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics.

Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn.

Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn-Banach Theorem, Hölder's Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability.

Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysisthat is freely available online. For errata and updates, visit [...]

This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics.

Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn.

Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn-Banach Theorem, Hölder's Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability.

Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysisthat is freely available online. For errata and updates, visit [...]

Inhaltsverzeichnis
About the Author.- Preface for Students.- Preface for Instructors.- Acknowledgments.- 1. Riemann Integration.- 2. Measures.- 3. Integration.- 4. Differentiation.- 5. Product Measures.- 6. Banach Spaces.- 7. L^p Spaces.- 8. Hilbert Spaces.- 9. Real and Complex Measures.- 10. Linear Maps on Hilbert Spaces.- 11. Fourier Analysis.- 12. Probability Measures.- Photo Credits.- Bibliography.- Notation Index.- Index.- Colophon: Notes on Typesetting.
Details
Erscheinungsjahr: 2019
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xviii
411 S.
21 s/w Illustr.
20 farbige Illustr.
411 p. 41 illus.
20 illus. in color.
ISBN-13: 9783030331429
ISBN-10: 3030331423
Sprache: Englisch
Herstellernummer: 978-3-030-33142-9
Autor: Axler, Sheldon
Auflage: 1st ed. 2020
Hersteller: Springer
Sheldon Axler
Springer, Berlin
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Abbildungen: XVIII, 411 p. 41 illus., 20 illus. in color.
Maße: 242 x 157 x 31 mm
Von/Mit: Sheldon Axler
Erscheinungsdatum: 24.12.2019
Gewicht: 0,748 kg
Artikel-ID: 117418946
Inhaltsverzeichnis
About the Author.- Preface for Students.- Preface for Instructors.- Acknowledgments.- 1. Riemann Integration.- 2. Measures.- 3. Integration.- 4. Differentiation.- 5. Product Measures.- 6. Banach Spaces.- 7. L^p Spaces.- 8. Hilbert Spaces.- 9. Real and Complex Measures.- 10. Linear Maps on Hilbert Spaces.- 11. Fourier Analysis.- 12. Probability Measures.- Photo Credits.- Bibliography.- Notation Index.- Index.- Colophon: Notes on Typesetting.
Details
Erscheinungsjahr: 2019
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xviii
411 S.
21 s/w Illustr.
20 farbige Illustr.
411 p. 41 illus.
20 illus. in color.
ISBN-13: 9783030331429
ISBN-10: 3030331423
Sprache: Englisch
Herstellernummer: 978-3-030-33142-9
Autor: Axler, Sheldon
Auflage: 1st ed. 2020
Hersteller: Springer
Sheldon Axler
Springer, Berlin
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Abbildungen: XVIII, 411 p. 41 illus., 20 illus. in color.
Maße: 242 x 157 x 31 mm
Von/Mit: Sheldon Axler
Erscheinungsdatum: 24.12.2019
Gewicht: 0,748 kg
Artikel-ID: 117418946
Sicherheitshinweis