Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
39,99 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 4-7 Werktage
Kategorien:
Beschreibung
Maschinelles Lernen ist ein interdisziplinäres Fach, das die Bereiche Informatik, Mathematik und das jeweilige Anwendungsgebiet zusammenführt. In diesem Buch werden alle drei Teilgebiete gleichermaßen berücksichtigt:
- Algorithmen des maschinellen Lernens verwenden und verstehen, wie und warum sie funktionieren.
- Kickstart zur Verwendung von Python 3 und seinem Ökosystem im Umfeld des maschinellen Lernens.
- Verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens, u.a. Random Forest, DBSCAN und Q-Learning.
Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen.
Die dritte Auflage wurde für die Keras/Tensorflow-Version 2 sowie Python 3.7 überarbeitet, mehrere Kapitel insbesondere zum bestärkten Lernen wurde aktualisiert und folgende Themen wurden unter anderem neu aufgenommen:
- Deep Q-Learning
- Class Activation Maps und Grad-CAM
- Pandas-Integration und -Einführung
- OpenAI Gym integriert
Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt.
- Algorithmen des maschinellen Lernens verwenden und verstehen, wie und warum sie funktionieren.
- Kickstart zur Verwendung von Python 3 und seinem Ökosystem im Umfeld des maschinellen Lernens.
- Verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens, u.a. Random Forest, DBSCAN und Q-Learning.
Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen.
Die dritte Auflage wurde für die Keras/Tensorflow-Version 2 sowie Python 3.7 überarbeitet, mehrere Kapitel insbesondere zum bestärkten Lernen wurde aktualisiert und folgende Themen wurden unter anderem neu aufgenommen:
- Deep Q-Learning
- Class Activation Maps und Grad-CAM
- Pandas-Integration und -Einführung
- OpenAI Gym integriert
Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt.
Maschinelles Lernen ist ein interdisziplinäres Fach, das die Bereiche Informatik, Mathematik und das jeweilige Anwendungsgebiet zusammenführt. In diesem Buch werden alle drei Teilgebiete gleichermaßen berücksichtigt:
- Algorithmen des maschinellen Lernens verwenden und verstehen, wie und warum sie funktionieren.
- Kickstart zur Verwendung von Python 3 und seinem Ökosystem im Umfeld des maschinellen Lernens.
- Verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens, u.a. Random Forest, DBSCAN und Q-Learning.
Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen.
Die dritte Auflage wurde für die Keras/Tensorflow-Version 2 sowie Python 3.7 überarbeitet, mehrere Kapitel insbesondere zum bestärkten Lernen wurde aktualisiert und folgende Themen wurden unter anderem neu aufgenommen:
- Deep Q-Learning
- Class Activation Maps und Grad-CAM
- Pandas-Integration und -Einführung
- OpenAI Gym integriert
Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt.
- Algorithmen des maschinellen Lernens verwenden und verstehen, wie und warum sie funktionieren.
- Kickstart zur Verwendung von Python 3 und seinem Ökosystem im Umfeld des maschinellen Lernens.
- Verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens, u.a. Random Forest, DBSCAN und Q-Learning.
Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen.
Die dritte Auflage wurde für die Keras/Tensorflow-Version 2 sowie Python 3.7 überarbeitet, mehrere Kapitel insbesondere zum bestärkten Lernen wurde aktualisiert und folgende Themen wurden unter anderem neu aufgenommen:
- Deep Q-Learning
- Class Activation Maps und Grad-CAM
- Pandas-Integration und -Einführung
- OpenAI Gym integriert
Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt.
Über den Autor
Prof. Dr. Jörg Frochte lehrt und forscht seit 2010 an der Hochschule Bochum. Als Professor für Angewandte Informatik und Mathematik hält er hier Vorlesungen in Mathematik, Simulation & Modellbildung und maschinellem Lernen.
Details
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Fertigungstechnik |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Bundle |
Inhalt: |
1 Buch
1 MP3, Download oder Online |
ISBN-13: | 9783446461444 |
ISBN-10: | 3446461442 |
Sprache: | Deutsch |
Herstellernummer: | 553/46144 |
Einband: | Gebunden |
Autor: | Frochte, Jörg |
Auflage: | 3. überarbeitete und erweiterte Auflage |
Hersteller: |
Hanser, Carl
Hanser Fachbuchverlag |
Verantwortliche Person für die EU: | Carl Hanser Verlag GmbH & Co.KG, Kolbergerstr. 22, D-81679 München, info@hanser.de |
Maße: | 241 x 177 x 40 mm |
Von/Mit: | Jörg Frochte |
Erscheinungsdatum: | 20.11.2020 |
Gewicht: | 1,167 kg |
Über den Autor
Prof. Dr. Jörg Frochte lehrt und forscht seit 2010 an der Hochschule Bochum. Als Professor für Angewandte Informatik und Mathematik hält er hier Vorlesungen in Mathematik, Simulation & Modellbildung und maschinellem Lernen.
Details
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Fertigungstechnik |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Bundle |
Inhalt: |
1 Buch
1 MP3, Download oder Online |
ISBN-13: | 9783446461444 |
ISBN-10: | 3446461442 |
Sprache: | Deutsch |
Herstellernummer: | 553/46144 |
Einband: | Gebunden |
Autor: | Frochte, Jörg |
Auflage: | 3. überarbeitete und erweiterte Auflage |
Hersteller: |
Hanser, Carl
Hanser Fachbuchverlag |
Verantwortliche Person für die EU: | Carl Hanser Verlag GmbH & Co.KG, Kolbergerstr. 22, D-81679 München, info@hanser.de |
Maße: | 241 x 177 x 40 mm |
Von/Mit: | Jörg Frochte |
Erscheinungsdatum: | 20.11.2020 |
Gewicht: | 1,167 kg |
Sicherheitshinweis