Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Machine Learning for Signal Processing
Data Science, Algorithms, and Computational Statistics
Buch von Max A. Little
Sprache: Englisch

108,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.
Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.
Über den Autor
Max A. Little is Professor of Mathematics at Aston University, UK, and a world-leading expert in signal processing and machine learning. His research in machine learning for digital health is highly influential and is the basis of advances in basic and applied research into quantifying neurological disorders such as Parkinson disease. He has published over 60 articles in the scientific literature on the topic, two patents, and a textbook. He is an advisor to government and leading international corporations in topics such as machine learning for health.
Inhaltsverzeichnis
  • 1: Mathematical Foundations

  • 2: Optimization

  • 3: Random Sampling

  • 4: Statistical Modelling and Inference

  • 5: Probabalistic Graphical Models

  • 6: Statistical Machine Learning

  • 7: Linear-Gaussian Systems and Signal Processing

  • 8: Discrete Signals: Sampling, Quantization and Coding

  • 9: Nonlinear and Non-Gaussian Signal Processing

  • 10: Nonparametric Bayesian Machine Learning and Signal Processing

Details
Erscheinungsjahr: 2019
Fachbereich: Astronomie
Genre: Importe, Physik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9780198714934
ISBN-10: 0198714939
Sprache: Englisch
Einband: Gebunden
Autor: Little, Max A.
Hersteller: Oxford University Press
Verantwortliche Person für die EU: Deutsche Bibelgesellschaft, Postfach:81 03 40, D-70567 Stuttgart, vertrieb@dbg.de
Maße: 255 x 197 x 24 mm
Von/Mit: Max A. Little
Erscheinungsdatum: 13.08.2019
Gewicht: 0,971 kg
Artikel-ID: 116801015
Über den Autor
Max A. Little is Professor of Mathematics at Aston University, UK, and a world-leading expert in signal processing and machine learning. His research in machine learning for digital health is highly influential and is the basis of advances in basic and applied research into quantifying neurological disorders such as Parkinson disease. He has published over 60 articles in the scientific literature on the topic, two patents, and a textbook. He is an advisor to government and leading international corporations in topics such as machine learning for health.
Inhaltsverzeichnis
  • 1: Mathematical Foundations

  • 2: Optimization

  • 3: Random Sampling

  • 4: Statistical Modelling and Inference

  • 5: Probabalistic Graphical Models

  • 6: Statistical Machine Learning

  • 7: Linear-Gaussian Systems and Signal Processing

  • 8: Discrete Signals: Sampling, Quantization and Coding

  • 9: Nonlinear and Non-Gaussian Signal Processing

  • 10: Nonparametric Bayesian Machine Learning and Signal Processing

Details
Erscheinungsjahr: 2019
Fachbereich: Astronomie
Genre: Importe, Physik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9780198714934
ISBN-10: 0198714939
Sprache: Englisch
Einband: Gebunden
Autor: Little, Max A.
Hersteller: Oxford University Press
Verantwortliche Person für die EU: Deutsche Bibelgesellschaft, Postfach:81 03 40, D-70567 Stuttgart, vertrieb@dbg.de
Maße: 255 x 197 x 24 mm
Von/Mit: Max A. Little
Erscheinungsdatum: 13.08.2019
Gewicht: 0,971 kg
Artikel-ID: 116801015
Sicherheitshinweis