Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
49,99 €*
Versandkostenfrei per Post / DHL
Lieferzeit 4-7 Werktage
Kategorien:
Beschreibung
Inverse Probleme treten in der heutigen Hochtechnologie häufig auf. Immer wenn man von einer beobachteten (gemessenen) WIRKUNG auf deren URSACHE schließen möchte, liegt ein inverses Problem vor. So wird in der Computer-Tomographie die Abminderung von Röntgenstrahlen gemessen beim Durchgang durch ein Objekt (z.B. menschlicher Körper). Die Ursache der Abminderung ist die Dichte des Objekts. Ein anderes Beispiel stellt die Ultraschall-Tomographie dar: Hier wird die Streuung von Schallwellen an einem Objekt beobachtet, hervorgerufen durch die Form des Objekts, auf die man schließen möchte. Aus mathematischer Sicht bestehen inverse Probleme darin, Operatorgleichungen zu lösen. Das vorliegende Lehrbuch führt umfassend ein in die mathematischen Grundlagen zur stabilen Lösung inverser Probleme, zielt dabei aber auch auf konkrete Anwendungen ab.
Inverse Probleme treten in der heutigen Hochtechnologie häufig auf. Immer wenn man von einer beobachteten (gemessenen) WIRKUNG auf deren URSACHE schließen möchte, liegt ein inverses Problem vor. So wird in der Computer-Tomographie die Abminderung von Röntgenstrahlen gemessen beim Durchgang durch ein Objekt (z.B. menschlicher Körper). Die Ursache der Abminderung ist die Dichte des Objekts. Ein anderes Beispiel stellt die Ultraschall-Tomographie dar: Hier wird die Streuung von Schallwellen an einem Objekt beobachtet, hervorgerufen durch die Form des Objekts, auf die man schließen möchte. Aus mathematischer Sicht bestehen inverse Probleme darin, Operatorgleichungen zu lösen. Das vorliegende Lehrbuch führt umfassend ein in die mathematischen Grundlagen zur stabilen Lösung inverser Probleme, zielt dabei aber auch auf konkrete Anwendungen ab.
Über den Autor
Prof. Dr. Andreas Rieder lehrt und forscht an den Instituten für Praktische Mathematik und für Wissenschaftliches Rechnen und Mathematische Modellbildung der Universität Karlsruhe (TH).
Zusammenfassung
Inverse Probleme treten in der heutigen Hochtechnologie häufig auf. Immer wenn man von einer beobachteten (gemessenen) WIRKUNG auf deren URSACHE schließen möchte, liegt ein inverses Problem vor. So wird in der Computer-Tomographie die Abminderung von Röntgenstrahlen gemessen beim Durchgang durch ein Objekt (z.B. menschlicher Körper). Aus mathematischer Sicht bestehen inverse Probleme darin, Operatorgleichungen zu lösen. Diese Gleichungen sind typischerweise schlecht gestellt, d.h. kleine Änderungen (z.B. Messfehler) in den Wirkungen ziehen große Änderungen in den zugehörigen Ursachen nach sich. Das vorliegende Lehrbuch führt umfassend ein in die mathematischen Grundlagen zur stabilen Lösung inverser Probleme, zielt dabei aber auch auf konkrete Anwendungen ab. Es eignet sich als Grundlage für eine vierstündige Vorlesung und zum Selbststudium, das durch zahlreiche Übungen unterstützt wird.
Inhaltsverzeichnis
1 Einführung: Was ist ein inverses Problem?.- 1.1 Computer-Tomographie.- 1.2 Impedanz-Tomographie.- 1.3 Ein inverses Streuproblem: Ultraschall-Tomographie.- 1.4 Inverse Wärmeleitungsprobleme.- 1.5 Abstrakte Formulierung inverser Probleme.- 1.6 Übungsaufgaben.- 2 Schlecht gestellte Operatorgleichungen.- 2.1 Verallgemeinerte Inverse (Moore-Penrose-Inverse).- 2.2 Kompakte Operatoren.- 2.3 Singulärwertzerlegung kompakter Operatoren.- 2.4 Ein Funktionalkalkül für kompakte Operatoren.- 2.5 Ein weiteres Beispiel zur SWZ: Die Radon-Transformation.- 2.6 Übungsaufgaben.- 3 Regularisierung linearer Probleme und Optimalität.- 3.1 Vorbetrachtungen.- 3.2 Klassifizierung von Regularisierungsverfahren.- 3.3 Eine allgemeine Theorie linearer Regularisierungen.- 3.4 Das Diskrepanzprinzip.- 3.5 Ein verallgemeinertes Diskrepanzprinzip.- 3.6 Heuristische ("?-freie") Parameterstrategien.- 3.7 Übungsaufgaben.- 4 Tikhonov-Phillips-Regularisierung.- 4.1 Verallgemeinerte Tikhonov-Phillips-Regularisierung.- 4.2 Iterierte Tikhonov-Phillips-Regularisierung.- 4.3 Übungsaufgaben.- 5 Iterative Regularisierungen.- 5.1 Landweber-Verfahren.- 5.2 Semi-iterative Verfahren.- 5.3 Das Verfahren der konjugierten Gradienten (cg-Verfahren).- 5.4 Übungsaufgaben.- 6 Diskretisierung und Regularisierung.- 6.1 Projektionsverfahren.- 6.2 Regularisierung von Projektionsverfahren.- 6.3 Semi-diskrete Probleme: Die Approximative Inverse.- 6.4 Übungsaufgaben.- 7 Nichtlineare schlecht gestellte Probleme.- 7.1 Lokale Schlechtgestelltheit.- 7.2 Fréchet-Differenzierbarkeit.- 7.3 Charakterisierung nichtlinearer schlecht gestellter Probleme.- 7.4 Nichtlineare Tikhonov-Phillips-Regularisierung.- 7.5 Iterative Methoden vom Newton-Typ.- 7.6 Übungsaufgaben.- 8 Anhang: Grundbegriffe aus der Funktionalanalysis.- 8.1Normierte Räume und lineare Abbildungen.- 8.2 Drei Hauptsätze der Funktionalanalysis.- 8.3 Innenprodukträume.
Details
Erscheinungsjahr: | 2003 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Thema: | Lexika |
Medium: | Taschenbuch |
Inhalt: |
xiv
300 S. 196 s/w Illustr. 300 S. 196 Abb. |
ISBN-13: | 9783528031985 |
ISBN-10: | 3528031980 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Rieder, Andreas |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag |
Verantwortliche Person für die EU: | Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, D-65189 Wiesbaden, juergen.hartmann@springer.com |
Maße: | 240 x 170 x 18 mm |
Von/Mit: | Andreas Rieder |
Erscheinungsdatum: | 30.10.2003 |
Gewicht: | 0,546 kg |
Über den Autor
Prof. Dr. Andreas Rieder lehrt und forscht an den Instituten für Praktische Mathematik und für Wissenschaftliches Rechnen und Mathematische Modellbildung der Universität Karlsruhe (TH).
Zusammenfassung
Inverse Probleme treten in der heutigen Hochtechnologie häufig auf. Immer wenn man von einer beobachteten (gemessenen) WIRKUNG auf deren URSACHE schließen möchte, liegt ein inverses Problem vor. So wird in der Computer-Tomographie die Abminderung von Röntgenstrahlen gemessen beim Durchgang durch ein Objekt (z.B. menschlicher Körper). Aus mathematischer Sicht bestehen inverse Probleme darin, Operatorgleichungen zu lösen. Diese Gleichungen sind typischerweise schlecht gestellt, d.h. kleine Änderungen (z.B. Messfehler) in den Wirkungen ziehen große Änderungen in den zugehörigen Ursachen nach sich. Das vorliegende Lehrbuch führt umfassend ein in die mathematischen Grundlagen zur stabilen Lösung inverser Probleme, zielt dabei aber auch auf konkrete Anwendungen ab. Es eignet sich als Grundlage für eine vierstündige Vorlesung und zum Selbststudium, das durch zahlreiche Übungen unterstützt wird.
Inhaltsverzeichnis
1 Einführung: Was ist ein inverses Problem?.- 1.1 Computer-Tomographie.- 1.2 Impedanz-Tomographie.- 1.3 Ein inverses Streuproblem: Ultraschall-Tomographie.- 1.4 Inverse Wärmeleitungsprobleme.- 1.5 Abstrakte Formulierung inverser Probleme.- 1.6 Übungsaufgaben.- 2 Schlecht gestellte Operatorgleichungen.- 2.1 Verallgemeinerte Inverse (Moore-Penrose-Inverse).- 2.2 Kompakte Operatoren.- 2.3 Singulärwertzerlegung kompakter Operatoren.- 2.4 Ein Funktionalkalkül für kompakte Operatoren.- 2.5 Ein weiteres Beispiel zur SWZ: Die Radon-Transformation.- 2.6 Übungsaufgaben.- 3 Regularisierung linearer Probleme und Optimalität.- 3.1 Vorbetrachtungen.- 3.2 Klassifizierung von Regularisierungsverfahren.- 3.3 Eine allgemeine Theorie linearer Regularisierungen.- 3.4 Das Diskrepanzprinzip.- 3.5 Ein verallgemeinertes Diskrepanzprinzip.- 3.6 Heuristische ("?-freie") Parameterstrategien.- 3.7 Übungsaufgaben.- 4 Tikhonov-Phillips-Regularisierung.- 4.1 Verallgemeinerte Tikhonov-Phillips-Regularisierung.- 4.2 Iterierte Tikhonov-Phillips-Regularisierung.- 4.3 Übungsaufgaben.- 5 Iterative Regularisierungen.- 5.1 Landweber-Verfahren.- 5.2 Semi-iterative Verfahren.- 5.3 Das Verfahren der konjugierten Gradienten (cg-Verfahren).- 5.4 Übungsaufgaben.- 6 Diskretisierung und Regularisierung.- 6.1 Projektionsverfahren.- 6.2 Regularisierung von Projektionsverfahren.- 6.3 Semi-diskrete Probleme: Die Approximative Inverse.- 6.4 Übungsaufgaben.- 7 Nichtlineare schlecht gestellte Probleme.- 7.1 Lokale Schlechtgestelltheit.- 7.2 Fréchet-Differenzierbarkeit.- 7.3 Charakterisierung nichtlinearer schlecht gestellter Probleme.- 7.4 Nichtlineare Tikhonov-Phillips-Regularisierung.- 7.5 Iterative Methoden vom Newton-Typ.- 7.6 Übungsaufgaben.- 8 Anhang: Grundbegriffe aus der Funktionalanalysis.- 8.1Normierte Räume und lineare Abbildungen.- 8.2 Drei Hauptsätze der Funktionalanalysis.- 8.3 Innenprodukträume.
Details
Erscheinungsjahr: | 2003 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Thema: | Lexika |
Medium: | Taschenbuch |
Inhalt: |
xiv
300 S. 196 s/w Illustr. 300 S. 196 Abb. |
ISBN-13: | 9783528031985 |
ISBN-10: | 3528031980 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Rieder, Andreas |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag |
Verantwortliche Person für die EU: | Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, D-65189 Wiesbaden, juergen.hartmann@springer.com |
Maße: | 240 x 170 x 18 mm |
Von/Mit: | Andreas Rieder |
Erscheinungsdatum: | 30.10.2003 |
Gewicht: | 0,546 kg |
Sicherheitshinweis