Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Inverse Problems and Data Assimilation
Taschenbuch von Daniel Sanz-Alonso (u. a.)
Sprache: Englisch

48,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.
This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.
Über den Autor
Daniel Sanz-Alonso is Assistant Professor in the Committee on Computational and Applied Mathematics within the Department of Statistics at the University of Chicago. His contributions to inverse problems and data assimilation have been recognized with a José Luis Rubio de Francia prize and an NSF CAREER award.
Inhaltsverzeichnis
Introduction; Part I. Inverse Problems: 1. Bayesian inverse problems and well-posedness; 2. The linear-Gaussian setting; 3. Optimization perspective; 4. Gaussian approximation; 5. Monte Carlo sampling and importance sampling; 6. Markov chain Monte Carlo; Exercises for Part I; Part II. Data Assimilation: 7. Filtering and smoothing problems and well-posedness; 8. The Kalman filter and smoother; 9. Optimization for filtering and smoothing: 3DVAR and 4DVAR; 10. The extended and ensemble Kalman filters; 11. Particle filter; 12. Optimal particle filter; Exercises for Part II; Part III. Kalman Inversion: 13. Blending inverse problems and data assimilation; References; Index.
Details
Erscheinungsjahr: 2023
Fachbereich: Analysis
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781009414296
ISBN-10: 1009414291
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Sanz-Alonso, Daniel
Stuart, Andrew
Taeb, Armeen
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 226 x 150 x 14 mm
Von/Mit: Daniel Sanz-Alonso (u. a.)
Erscheinungsdatum: 10.08.2023
Gewicht: 0,31 kg
Artikel-ID: 127154551
Über den Autor
Daniel Sanz-Alonso is Assistant Professor in the Committee on Computational and Applied Mathematics within the Department of Statistics at the University of Chicago. His contributions to inverse problems and data assimilation have been recognized with a José Luis Rubio de Francia prize and an NSF CAREER award.
Inhaltsverzeichnis
Introduction; Part I. Inverse Problems: 1. Bayesian inverse problems and well-posedness; 2. The linear-Gaussian setting; 3. Optimization perspective; 4. Gaussian approximation; 5. Monte Carlo sampling and importance sampling; 6. Markov chain Monte Carlo; Exercises for Part I; Part II. Data Assimilation: 7. Filtering and smoothing problems and well-posedness; 8. The Kalman filter and smoother; 9. Optimization for filtering and smoothing: 3DVAR and 4DVAR; 10. The extended and ensemble Kalman filters; 11. Particle filter; 12. Optimal particle filter; Exercises for Part II; Part III. Kalman Inversion: 13. Blending inverse problems and data assimilation; References; Index.
Details
Erscheinungsjahr: 2023
Fachbereich: Analysis
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781009414296
ISBN-10: 1009414291
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Sanz-Alonso, Daniel
Stuart, Andrew
Taeb, Armeen
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 226 x 150 x 14 mm
Von/Mit: Daniel Sanz-Alonso (u. a.)
Erscheinungsdatum: 10.08.2023
Gewicht: 0,31 kg
Artikel-ID: 127154551
Sicherheitshinweis