Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Infinitesimalrechnung
Analysis mit hyperreellen Zahlen
Taschenbuch von Peter Baumann (u. a.)
Sprache: Deutsch

32,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
In diesem Buch erfahren Sie, wie die Differential- und Integralrechnung schon nach einem einfachen Einstieg mit Hilfe infinitesimaler und infiniter Zahlen und ohne Grenzwertprozesse erlernt werden kann. Sie folgen dabei den intuitiven Vorstellungen der Urväter der Analysis, allerdings in logisch einwandfreier Weise.

Dies ist möglich, seit Abraham Robinson in den 1960er-Jahren gezeigt hat, dass die Menge der reellen Zahlen widerspruchsfrei um zusätzliche Elemente zur Menge der hyperreellen Zahlen erweitert werden kann.

Die hyperreellen, insbesondere die infinitesimalen, Zahlen haben mehrere didaktische Vorteile: Sie sind anschaulich, der abstrakte Grenzwertformalismus entfällt, und sie stellen ein produktives Werkzeug dar, denn die Regeln können errechnet werden (und müssen nicht erst erraten und dann bewiesen werden).

Für Interessierte werden zusätzlich auch tiefer gehende Zugänge zu den hyperreellen Zahlen aufgezeigt.
Die vorliegende zweite Auflage ist vollständig durchgesehen, didaktisch weiter verbessert und um zusätzliche Beispiele des Einsatzes von hyperreellen Zahlen ergänzt.
In diesem Buch erfahren Sie, wie die Differential- und Integralrechnung schon nach einem einfachen Einstieg mit Hilfe infinitesimaler und infiniter Zahlen und ohne Grenzwertprozesse erlernt werden kann. Sie folgen dabei den intuitiven Vorstellungen der Urväter der Analysis, allerdings in logisch einwandfreier Weise.

Dies ist möglich, seit Abraham Robinson in den 1960er-Jahren gezeigt hat, dass die Menge der reellen Zahlen widerspruchsfrei um zusätzliche Elemente zur Menge der hyperreellen Zahlen erweitert werden kann.

Die hyperreellen, insbesondere die infinitesimalen, Zahlen haben mehrere didaktische Vorteile: Sie sind anschaulich, der abstrakte Grenzwertformalismus entfällt, und sie stellen ein produktives Werkzeug dar, denn die Regeln können errechnet werden (und müssen nicht erst erraten und dann bewiesen werden).

Für Interessierte werden zusätzlich auch tiefer gehende Zugänge zu den hyperreellen Zahlen aufgezeigt.
Die vorliegende zweite Auflage ist vollständig durchgesehen, didaktisch weiter verbessert und um zusätzliche Beispiele des Einsatzes von hyperreellen Zahlen ergänzt.
Über den Autor

Peter Baumann studierte an der Technischen Universität Berlin; er arbeitete an verschiedenen Schulen des Sekundarbereichs und war stellvertretender Schulleiter am Hermann-Ehlers-Gymnasium in Berlin.

Dr. Thomas Kirski studierte an der Freien Universität Berlin und wurde dort 1991 promoviert. Er war als Gymnasiallehrer tätig, seit 2005 als Fachbereichsleiter Naturwissenschaften am Hans-Carossa-Gymnasium, Berlin. Er starb kurz vor Erscheinen dieses Buches.
Zusammenfassung

Bietet eine gut verständliche Einführung in die Nonstandard-Analysis

Enthält zahlreiche ausführliche Beispiele

In der zweiten Auflage vollständig durchgesehen, didaktisch verbessert und um weitere Beispiele ergänzt

Inhaltsverzeichnis
Einleitung.- Hyperreelle Zahlen.- Differentialrechnung.- Integralrechnung.- Transzendente Funktionen.- Unendliche Reihen.- Sachverzeichnis.
Details
Erscheinungsjahr: 2022
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: XIV
295 S.
119 s/w Illustr.
295 S. 119 Abb.
ISBN-13: 9783662645703
ISBN-10: 366264570X
Sprache: Deutsch
Herstellernummer: 978-3-662-64570-3
Einband: Kartoniert / Broschiert
Autor: Baumann, Peter
Kirski, Thomas
Auflage: 2. Aufl. 2022
Hersteller: Springer Berlin
Springer-Verlag GmbH
Springer Spektrum
Verantwortliche Person für die EU: Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com
Abbildungen: XIV, 295 S. 119 Abbildungen
Maße: 235 x 155 x 16 mm
Von/Mit: Peter Baumann (u. a.)
Erscheinungsdatum: 10.06.2022
Gewicht: 0,532 kg
Artikel-ID: 120728752
Über den Autor

Peter Baumann studierte an der Technischen Universität Berlin; er arbeitete an verschiedenen Schulen des Sekundarbereichs und war stellvertretender Schulleiter am Hermann-Ehlers-Gymnasium in Berlin.

Dr. Thomas Kirski studierte an der Freien Universität Berlin und wurde dort 1991 promoviert. Er war als Gymnasiallehrer tätig, seit 2005 als Fachbereichsleiter Naturwissenschaften am Hans-Carossa-Gymnasium, Berlin. Er starb kurz vor Erscheinen dieses Buches.
Zusammenfassung

Bietet eine gut verständliche Einführung in die Nonstandard-Analysis

Enthält zahlreiche ausführliche Beispiele

In der zweiten Auflage vollständig durchgesehen, didaktisch verbessert und um weitere Beispiele ergänzt

Inhaltsverzeichnis
Einleitung.- Hyperreelle Zahlen.- Differentialrechnung.- Integralrechnung.- Transzendente Funktionen.- Unendliche Reihen.- Sachverzeichnis.
Details
Erscheinungsjahr: 2022
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: XIV
295 S.
119 s/w Illustr.
295 S. 119 Abb.
ISBN-13: 9783662645703
ISBN-10: 366264570X
Sprache: Deutsch
Herstellernummer: 978-3-662-64570-3
Einband: Kartoniert / Broschiert
Autor: Baumann, Peter
Kirski, Thomas
Auflage: 2. Aufl. 2022
Hersteller: Springer Berlin
Springer-Verlag GmbH
Springer Spektrum
Verantwortliche Person für die EU: Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com
Abbildungen: XIV, 295 S. 119 Abbildungen
Maße: 235 x 155 x 16 mm
Von/Mit: Peter Baumann (u. a.)
Erscheinungsdatum: 10.06.2022
Gewicht: 0,532 kg
Artikel-ID: 120728752
Sicherheitshinweis