160,50 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Foreword to the Second Edition xvii
Foreword to the First Edition xix
Preface to the Second Edition xxi
Preface to the First Edition xxiii
Acknowledgments for the Second Edition xxv
Acknowledgments from the First Edition xxvii
1 Introduction to Microwave Measurements 1
1.1 Modern Measurement Process 2
1.2 A Practical Measurement Focus 3
1.3 Definition of Microwave Parameters 3
1.3.1 S-Parameter Primer 4
1.3.2 Phase Response of Networks 11
1.4 Power Parameters 13
1.4.1 Incident and Reflected Power 13
1.4.2 Available Power 13
1.4.3 Delivered Power 14
1.4.4 Power Available from a Network 14
1.4.5 Available Gain 15
1.5 Noise Figure and Noise Parameters 15
1.5.1 Noise Temperature 16
1.5.2 Effective or Excess Input Noise Temperature 17
1.5.3 Excess Noise Power and Operating Temperature 17
1.5.4 Noise Power Density 17
1.5.5 Noise Parameters 18
1.6 Distortion Parameters 19
1.6.1 Harmonics 19
1.6.2 Second-Order Intercept 19
1.6.3 Two-Tone Intermodulation Distortion 20
1.6.4 Adjacent Channel Power and Adjacent Channel Level Ratio 23
1.6.5 Noise Power Ratio (NPR) 24
1.6.6 Error Vector Magnitude (EVM) 25
1.7 Characteristics of Microwave Components 26
1.8 Passive Microwave Components 27
1.8.1 Cables, Connectors, and Transmission Lines 27
1.8.2 Connectors 31
1.8.3 Non-coaxial Transmission Lines 44
1.9 Filters 47
1.10 Directional Couplers 49
1.11 Circulators and Isolators 51
1.12 Antennas 52
1.13 PC Board Components 53
1.13.1 SMT Resistors 53
1.13.2 SMT Capacitors 56
1.13.3 SMT Inductors 57
1.13.4 PC Board Vias 57
1.14 Active Microwave Components 58
1.14.1 Linear and Non-linear 58
1.14.2 Amplifiers: System, Low-Noise, High Power 58
1.14.3 Mixers and Frequency Converters 59
1.14.4 Frequency Multiplier and Limiters and Dividers 61
1.14.5 Oscillators 62
1.15 Measurement Instrumentation 63
1.15.1 Power Meters 63
1.15.2 Signal Sources 64
1.15.3 Spectrum Analyzers 65
1.15.4 Vector Signal Analyzers 66
1.15.5 Noise Figure Analyzers 67
1.15.6 Network Analyzers 67
References 70
2 VNA Measurement Systems 71
2.1 Introduction 71
2.2 VNA Block Diagrams 72
2.2.1 VNA Source 73
2.2.2 Understanding Source-Match 76
2.2.3 VNA Test Set 82
2.2.4 Directional Devices 85
2.2.5 VNA Receivers 91
2.2.6 IF and Data Processing 95
2.2.7 Multiport VNAs 97
2.2.8 High-Power Test Systems 104
2.2.9 VNA with mm-Wave Extenders 105
2.3 VNA Measurement of Linear Microwave Parameters 107
2.3.1 Measurement Limitations of the VNA 107
2.3.2 Limitations Due to External Components 111
2.4 Measurements Derived from S-Parameters 112
2.4.1 The Smith Chart 112
2.4.2 Transforming S-Parameters to Other Impedances 117
2.4.3 Concatenating Circuits and T-Parameters 118
2.5 Modeling Circuits Using Y and Z Conversion 120
2.5.1 Reflection Conversion 120
2.5.2 Transmission Conversion 120
2.6 Other Linear Parameters 121
2.6.1 Z-Parameters, or Open-Circuit Impedance Parameters 122
2.6.2 Y-Parameters, or Short-Circuit Admittance Parameters 123
2.6.3 ABCD Parameters 124
2.6.4 H-Parameters or Hybrid Parameters 125
2.6.5 Complex Conversions and Non-equal Reference Impedances 126
References 126
3 Calibration and Vector Error Correction 127
3.1 Introduction 127
3.1.1 Error Correction and Linear Measurement Methods for S-Parameters 128
3.1.2 Power Measurements with a VNA 131
3.2 Basic Error Correction for S-Parameters: Cal-Application 134
3.2.1 12-Term Error Model 134
3.2.2 1-Port Error Model 136
3.2.3 8-Term Error Model 136
3.3 Determining Error Terms: Cal-Acquisition for 12-Term Models 139
3.3.1 1-Port Error Terms 139
3.3.2 1-Port Standards 141
3.3.3 2-Port Error Terms 148
3.3.4 12-Term to 11-Term Error Model 153
3.4 Determining Error Terms: Cal-Acquisition for 8-Term Models 153
3.4.1 TRL Standards and Raw Measurements 153
3.4.2 Special Cases for TRL Calibration 157
3.4.3 Unknown Thru or SOLR (Reciprocal Thru Calibration) 158
3.4.4 Applications of Unknown Thru Calibrations 159
3.4.5 QSOLT Calibration 161
3.4.6 Electronic Calibration (ECal(TM)) or Automatic Calibration 162
3.5 Waveguide Calibrations 166
3.6 Calibration for Source Power 167
3.6.1 Calibrating Source Power for Source Frequency Response 168
3.6.2 Calibration for Power Sensor Mismatch 169
3.6.3 Calibration for Source Power Linearity 171
3.7 Calibration for Receiver Power 173
3.7.1 Some Historical Perspective 173
3.7.2 Modern Receiver Power Calibration 173
3.7.3 Response Correction for the Transmission Test Receiver 178
3.7.4 Power Waves vs. Actual Waves 181
3.8 Calibrating Multiple Channels Simultaneously: Cal All 182
3.9 Multiport Calibration Strategies 186
3.9.1 N × 2-Port Calibrations: Switching Test Sets 186
3.9.2 N-port Calibration: True Multiport 188
3.10 Automatic In-Situ Calibrations: CalPod 191
3.10.1 CalPod Initialization and Recorrection 192
3.10.2 CalPod-as-Ecal 194
3.11 Devolved Calibrations 194
3.11.1 Response Calibrations 195
3.11.2 Enhanced Response Calibration 196
3.12 Determining Residual Errors 199
3.12.1 Reflection Errors 199
3.12.2 Using Airlines to Determine Residual Errors 199
3.13 Computing Measurement Uncertainties 210
3.13.1 Uncertainty in Reflection Measurements 210
3.13.2 Uncertainty in Source Power 211
3.13.3 Uncertainty in Measuring Power (Receiver Uncertainty) 212
3.14 S21 or Transmission Uncertainty 212
3.14.1 General Uncertainty Equation for S21 214
3.14.2 Dynamic Uncertainty Computation 215
3.15 Errors in Phase 218
3.16 Practical Calibration Limitations 219
3.16.1 Cable Flexure 220
3.16.2 Changing Power after Calibration 221
3.16.3 Compensating for Changes in Step Attenuators 223
3.16.4 Connector Repeatability 225
3.16.5 Noise Effects 226
3.16.6 Drift: Short-Term and Long-Term 227
3.16.7 Interpolation of Error Terms 229
3.16.8 Calibration Quality: Electronic vs. Mechanical Kits 231
Reference 232
4 Time-Domain Transforms 235
4.1 Introduction 235
4.2 The Fourier Transform 236
4.2.1 The Continuous Fourier Transform 236
4.2.2 Even and Odd Functions and the Fourier Transform 236
4.2.3 Modulation (Shift) Theorem 237
4.3 The Discrete Fourier Transform 238
4.3.1 Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) 238
4.3.2 Discrete Fourier Transforms 240
4.4 Fourier Transform (Analytic) vs. VNA Time Domain Transform 240
4.4.1 Defining the Fourier Transform 241
4.4.2 Effects of Discrete Sampling 242
4.4.3 Effects of Truncated Frequency 244
4.4.4 Windowing to Reduce Effects of Truncation 246
4.4.5 Scaling and Renormalization 248
4.5 Low-Pass Transforms 248
4.5.1 Low-Pass Impulse Mode 248
4.5.2 DC Extrapolation 249
4.5.3 Low-Pass Step Mode 249
4.5.4 Band-Pass Mode 251
4.6 Time-Domain Gating 252
4.6.1 Gating Loss and Renormalization 253
4.7 Examples of Time-Domain Transforms of Various Networks 256
4.7.1 Time-Domain Response of Changes in Line Impedance 256
4.7.2 Time-Domain Response of Discrete Discontinuities 257
4.7.3 Time-Domain Responses of Various Circuits 257
4.8 The Effects of Masking and Gating on Measurement Accuracy 259
4.8.1 Compensation for Changes in Line Impedance 259
4.8.2 Compensation for Discrete Discontinuities 260
4.8.3 Time-Domain Gating 260
4.8.4 Estimating an Uncertainty Due to Masking 265
4.9 Time-Domain Transmission Using VNA 265
4.10 Conclusions 269
References 269
5 Measuring Linear Passive Devices 271
5.1 Transmission Lines, Cables, and Connectors 271
5.1.1 Calibration for Low Loss Devices with Connectors 271
5.1.2 Measuring Electrically Long Devices 273
5.1.3 Attenuation Measurements 278
5.1.4 Return Loss Measurements 295
5.1.5 Cable Length and Delay 305
5.2 Filters and Filter Measurements 306
5.2.1 Filter Classes and Difficulties 306
5.2.2 Duplexer and Diplexers 307
5.2.3 Measuring Tunable High-Performance Filters 308
5.2.4 Measuring Transmission Response 310
5.2.5 High Speed vs. Dynamic Range 315
5.2.6 Extremely High Dynamic Range Measurements 317
5.2.7 Calibration Considerations 326
5.3 Multiport Devices 327
5.3.1 Differential Cables and Lines 328
5.3.2 Couplers 328
5.3.3 Hybrids, Splitters, and Dividers 331
5.3.4 Circulators and Isolators 334
5.4 Resonators 336
5.4.1 Resonator Responses on a Smith Chart 336
5.5 Antenna Measurements 338
5.6 Conclusions 340
References 341
6 Measuring Amplifiers 343
6.1 Amplifiers as a Linear Devices 343
6.1.1 Pretesting an Amplifier 344
6.1.2 Optimizing VNA Settings for Calibration 346
6.1.3 Calibration for Amplifier Measurements 347
6.1.4 Amplifier Measurements 351
6.1.5 Analysis of Amplifier Measurements 357
6.1.6 Saving Amplifier Measurement Results 367
6.2 Gain Compression Measurements...
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Importe, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 840 S. |
ISBN-13: | 9781119477136 |
ISBN-10: | 1119477131 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Dunsmore, Joel P |
Auflage: | 2nd edition |
Hersteller: | Wiley |
Verantwortliche Person für die EU: | Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, amartine@wiley-vch.de |
Maße: | 249 x 180 x 52 mm |
Von/Mit: | Joel P Dunsmore |
Erscheinungsdatum: | 29.06.2020 |
Gewicht: | 1,58 kg |
Foreword to the Second Edition xvii
Foreword to the First Edition xix
Preface to the Second Edition xxi
Preface to the First Edition xxiii
Acknowledgments for the Second Edition xxv
Acknowledgments from the First Edition xxvii
1 Introduction to Microwave Measurements 1
1.1 Modern Measurement Process 2
1.2 A Practical Measurement Focus 3
1.3 Definition of Microwave Parameters 3
1.3.1 S-Parameter Primer 4
1.3.2 Phase Response of Networks 11
1.4 Power Parameters 13
1.4.1 Incident and Reflected Power 13
1.4.2 Available Power 13
1.4.3 Delivered Power 14
1.4.4 Power Available from a Network 14
1.4.5 Available Gain 15
1.5 Noise Figure and Noise Parameters 15
1.5.1 Noise Temperature 16
1.5.2 Effective or Excess Input Noise Temperature 17
1.5.3 Excess Noise Power and Operating Temperature 17
1.5.4 Noise Power Density 17
1.5.5 Noise Parameters 18
1.6 Distortion Parameters 19
1.6.1 Harmonics 19
1.6.2 Second-Order Intercept 19
1.6.3 Two-Tone Intermodulation Distortion 20
1.6.4 Adjacent Channel Power and Adjacent Channel Level Ratio 23
1.6.5 Noise Power Ratio (NPR) 24
1.6.6 Error Vector Magnitude (EVM) 25
1.7 Characteristics of Microwave Components 26
1.8 Passive Microwave Components 27
1.8.1 Cables, Connectors, and Transmission Lines 27
1.8.2 Connectors 31
1.8.3 Non-coaxial Transmission Lines 44
1.9 Filters 47
1.10 Directional Couplers 49
1.11 Circulators and Isolators 51
1.12 Antennas 52
1.13 PC Board Components 53
1.13.1 SMT Resistors 53
1.13.2 SMT Capacitors 56
1.13.3 SMT Inductors 57
1.13.4 PC Board Vias 57
1.14 Active Microwave Components 58
1.14.1 Linear and Non-linear 58
1.14.2 Amplifiers: System, Low-Noise, High Power 58
1.14.3 Mixers and Frequency Converters 59
1.14.4 Frequency Multiplier and Limiters and Dividers 61
1.14.5 Oscillators 62
1.15 Measurement Instrumentation 63
1.15.1 Power Meters 63
1.15.2 Signal Sources 64
1.15.3 Spectrum Analyzers 65
1.15.4 Vector Signal Analyzers 66
1.15.5 Noise Figure Analyzers 67
1.15.6 Network Analyzers 67
References 70
2 VNA Measurement Systems 71
2.1 Introduction 71
2.2 VNA Block Diagrams 72
2.2.1 VNA Source 73
2.2.2 Understanding Source-Match 76
2.2.3 VNA Test Set 82
2.2.4 Directional Devices 85
2.2.5 VNA Receivers 91
2.2.6 IF and Data Processing 95
2.2.7 Multiport VNAs 97
2.2.8 High-Power Test Systems 104
2.2.9 VNA with mm-Wave Extenders 105
2.3 VNA Measurement of Linear Microwave Parameters 107
2.3.1 Measurement Limitations of the VNA 107
2.3.2 Limitations Due to External Components 111
2.4 Measurements Derived from S-Parameters 112
2.4.1 The Smith Chart 112
2.4.2 Transforming S-Parameters to Other Impedances 117
2.4.3 Concatenating Circuits and T-Parameters 118
2.5 Modeling Circuits Using Y and Z Conversion 120
2.5.1 Reflection Conversion 120
2.5.2 Transmission Conversion 120
2.6 Other Linear Parameters 121
2.6.1 Z-Parameters, or Open-Circuit Impedance Parameters 122
2.6.2 Y-Parameters, or Short-Circuit Admittance Parameters 123
2.6.3 ABCD Parameters 124
2.6.4 H-Parameters or Hybrid Parameters 125
2.6.5 Complex Conversions and Non-equal Reference Impedances 126
References 126
3 Calibration and Vector Error Correction 127
3.1 Introduction 127
3.1.1 Error Correction and Linear Measurement Methods for S-Parameters 128
3.1.2 Power Measurements with a VNA 131
3.2 Basic Error Correction for S-Parameters: Cal-Application 134
3.2.1 12-Term Error Model 134
3.2.2 1-Port Error Model 136
3.2.3 8-Term Error Model 136
3.3 Determining Error Terms: Cal-Acquisition for 12-Term Models 139
3.3.1 1-Port Error Terms 139
3.3.2 1-Port Standards 141
3.3.3 2-Port Error Terms 148
3.3.4 12-Term to 11-Term Error Model 153
3.4 Determining Error Terms: Cal-Acquisition for 8-Term Models 153
3.4.1 TRL Standards and Raw Measurements 153
3.4.2 Special Cases for TRL Calibration 157
3.4.3 Unknown Thru or SOLR (Reciprocal Thru Calibration) 158
3.4.4 Applications of Unknown Thru Calibrations 159
3.4.5 QSOLT Calibration 161
3.4.6 Electronic Calibration (ECal(TM)) or Automatic Calibration 162
3.5 Waveguide Calibrations 166
3.6 Calibration for Source Power 167
3.6.1 Calibrating Source Power for Source Frequency Response 168
3.6.2 Calibration for Power Sensor Mismatch 169
3.6.3 Calibration for Source Power Linearity 171
3.7 Calibration for Receiver Power 173
3.7.1 Some Historical Perspective 173
3.7.2 Modern Receiver Power Calibration 173
3.7.3 Response Correction for the Transmission Test Receiver 178
3.7.4 Power Waves vs. Actual Waves 181
3.8 Calibrating Multiple Channels Simultaneously: Cal All 182
3.9 Multiport Calibration Strategies 186
3.9.1 N × 2-Port Calibrations: Switching Test Sets 186
3.9.2 N-port Calibration: True Multiport 188
3.10 Automatic In-Situ Calibrations: CalPod 191
3.10.1 CalPod Initialization and Recorrection 192
3.10.2 CalPod-as-Ecal 194
3.11 Devolved Calibrations 194
3.11.1 Response Calibrations 195
3.11.2 Enhanced Response Calibration 196
3.12 Determining Residual Errors 199
3.12.1 Reflection Errors 199
3.12.2 Using Airlines to Determine Residual Errors 199
3.13 Computing Measurement Uncertainties 210
3.13.1 Uncertainty in Reflection Measurements 210
3.13.2 Uncertainty in Source Power 211
3.13.3 Uncertainty in Measuring Power (Receiver Uncertainty) 212
3.14 S21 or Transmission Uncertainty 212
3.14.1 General Uncertainty Equation for S21 214
3.14.2 Dynamic Uncertainty Computation 215
3.15 Errors in Phase 218
3.16 Practical Calibration Limitations 219
3.16.1 Cable Flexure 220
3.16.2 Changing Power after Calibration 221
3.16.3 Compensating for Changes in Step Attenuators 223
3.16.4 Connector Repeatability 225
3.16.5 Noise Effects 226
3.16.6 Drift: Short-Term and Long-Term 227
3.16.7 Interpolation of Error Terms 229
3.16.8 Calibration Quality: Electronic vs. Mechanical Kits 231
Reference 232
4 Time-Domain Transforms 235
4.1 Introduction 235
4.2 The Fourier Transform 236
4.2.1 The Continuous Fourier Transform 236
4.2.2 Even and Odd Functions and the Fourier Transform 236
4.2.3 Modulation (Shift) Theorem 237
4.3 The Discrete Fourier Transform 238
4.3.1 Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) 238
4.3.2 Discrete Fourier Transforms 240
4.4 Fourier Transform (Analytic) vs. VNA Time Domain Transform 240
4.4.1 Defining the Fourier Transform 241
4.4.2 Effects of Discrete Sampling 242
4.4.3 Effects of Truncated Frequency 244
4.4.4 Windowing to Reduce Effects of Truncation 246
4.4.5 Scaling and Renormalization 248
4.5 Low-Pass Transforms 248
4.5.1 Low-Pass Impulse Mode 248
4.5.2 DC Extrapolation 249
4.5.3 Low-Pass Step Mode 249
4.5.4 Band-Pass Mode 251
4.6 Time-Domain Gating 252
4.6.1 Gating Loss and Renormalization 253
4.7 Examples of Time-Domain Transforms of Various Networks 256
4.7.1 Time-Domain Response of Changes in Line Impedance 256
4.7.2 Time-Domain Response of Discrete Discontinuities 257
4.7.3 Time-Domain Responses of Various Circuits 257
4.8 The Effects of Masking and Gating on Measurement Accuracy 259
4.8.1 Compensation for Changes in Line Impedance 259
4.8.2 Compensation for Discrete Discontinuities 260
4.8.3 Time-Domain Gating 260
4.8.4 Estimating an Uncertainty Due to Masking 265
4.9 Time-Domain Transmission Using VNA 265
4.10 Conclusions 269
References 269
5 Measuring Linear Passive Devices 271
5.1 Transmission Lines, Cables, and Connectors 271
5.1.1 Calibration for Low Loss Devices with Connectors 271
5.1.2 Measuring Electrically Long Devices 273
5.1.3 Attenuation Measurements 278
5.1.4 Return Loss Measurements 295
5.1.5 Cable Length and Delay 305
5.2 Filters and Filter Measurements 306
5.2.1 Filter Classes and Difficulties 306
5.2.2 Duplexer and Diplexers 307
5.2.3 Measuring Tunable High-Performance Filters 308
5.2.4 Measuring Transmission Response 310
5.2.5 High Speed vs. Dynamic Range 315
5.2.6 Extremely High Dynamic Range Measurements 317
5.2.7 Calibration Considerations 326
5.3 Multiport Devices 327
5.3.1 Differential Cables and Lines 328
5.3.2 Couplers 328
5.3.3 Hybrids, Splitters, and Dividers 331
5.3.4 Circulators and Isolators 334
5.4 Resonators 336
5.4.1 Resonator Responses on a Smith Chart 336
5.5 Antenna Measurements 338
5.6 Conclusions 340
References 341
6 Measuring Amplifiers 343
6.1 Amplifiers as a Linear Devices 343
6.1.1 Pretesting an Amplifier 344
6.1.2 Optimizing VNA Settings for Calibration 346
6.1.3 Calibration for Amplifier Measurements 347
6.1.4 Amplifier Measurements 351
6.1.5 Analysis of Amplifier Measurements 357
6.1.6 Saving Amplifier Measurement Results 367
6.2 Gain Compression Measurements...
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Importe, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 840 S. |
ISBN-13: | 9781119477136 |
ISBN-10: | 1119477131 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Dunsmore, Joel P |
Auflage: | 2nd edition |
Hersteller: | Wiley |
Verantwortliche Person für die EU: | Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, amartine@wiley-vch.de |
Maße: | 249 x 180 x 52 mm |
Von/Mit: | Joel P Dunsmore |
Erscheinungsdatum: | 29.06.2020 |
Gewicht: | 1,58 kg |