Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Differentialgeometrie von Kurven und Flächen
Taschenbuch von Manfredo P. ˜doœ Carmo
Sprache: Deutsch

59,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
Es gibt in der Differentialgeometrie von Kurven und FJachen zwei Betrachtungsweisen. Die eine, die man klassische Differentialgeometrie nennen konnte, entstand zusammen mit den Anfangen der Differential-und Integralrechnung. Grob gesagt studiert die klassische Differentialgeometrie lokale Eigenschaften von Kurven und FHichen. Dabei verstehen wir unter lokalen Eigenschaften solche, die nur vom Verhalten der Kurve oder Flache in der Umgebung eines Punktes abhiingen. Die Methoden, die sich als fUr das Studium solcher Eigenschaften geeignet erwiesen haben, sind die Methoden der Differentialrechnung. Aus diesem Grund sind die in der Differentialgeometrie untersuchten Kurven und Flachen durch Funktionen definiert, die von einer gewissen Differenzierbarkeitsklasse sind. Die andere Betrachtungsweise ist die sogenannte globale Differentialgeometrie. Hierbei untersucht man den EinfluB lokaler Eigenschaften auf das Verhalten der gesamten Kurve oder Flache. Der interessanteste und reprasentativste Teil der klassischen Differentialgeometrie ist wohl die Untersuchung von Flachen. Beim Studium von Flachen treten jedoch in nattirlicher Weise einige 10k ale Eigenschaften von Kurven auf. Deshalb benutzen wir dieses erste Kapi­ tel, urn kurz auf Kurven einzugehen.
Es gibt in der Differentialgeometrie von Kurven und FJachen zwei Betrachtungsweisen. Die eine, die man klassische Differentialgeometrie nennen konnte, entstand zusammen mit den Anfangen der Differential-und Integralrechnung. Grob gesagt studiert die klassische Differentialgeometrie lokale Eigenschaften von Kurven und FHichen. Dabei verstehen wir unter lokalen Eigenschaften solche, die nur vom Verhalten der Kurve oder Flache in der Umgebung eines Punktes abhiingen. Die Methoden, die sich als fUr das Studium solcher Eigenschaften geeignet erwiesen haben, sind die Methoden der Differentialrechnung. Aus diesem Grund sind die in der Differentialgeometrie untersuchten Kurven und Flachen durch Funktionen definiert, die von einer gewissen Differenzierbarkeitsklasse sind. Die andere Betrachtungsweise ist die sogenannte globale Differentialgeometrie. Hierbei untersucht man den EinfluB lokaler Eigenschaften auf das Verhalten der gesamten Kurve oder Flache. Der interessanteste und reprasentativste Teil der klassischen Differentialgeometrie ist wohl die Untersuchung von Flachen. Beim Studium von Flachen treten jedoch in nattirlicher Weise einige 10k ale Eigenschaften von Kurven auf. Deshalb benutzen wir dieses erste Kapi­ tel, urn kurz auf Kurven einzugehen.
Zusammenfassung
(Aufbaukurs Mathematik)
Inhaltsverzeichnis
1 Kurven.- 1.1 Einleitung.- 1.2 Parametrisierte Kurven.- 1.3 Reguläre Kurven. Bogenlänge.- 1.4 Das Vektorprodukt in ?3.- 1.5 Die lokale Theorie von Kurven, die nach der Bogenlänge parametrisiert sind.- 1.6 Die lokale kanonische Form.- 1.7 Globale Eigenschaften ebener Kurven.- 2 Reguläre Flächen.- 2.1 Einleitung.- 2.2 Reguläre Flächen. Urbilder regulärer Werte.- 2.3 Parameterwechsel. Differenzierbare Funktionen auf Flächen.- 2.4 Die Tangentialebene. Das Differential einer Abbildung.- 2.5 Die erste Fundamentalform. Flächeninhalt.- 2.6 Orientierung von Flächen.- 2.7 Eine Charakterisierung kompakter orientierbarer Flächen.- 2.8 Eine geometrische Definition des Flächeninhalts.- 3 Die Geometrie der Gauß-Abbildung.- 3.1 Einleitung.- 3.2 Die Definition der Gauß-Abbildung und ihre fundamentalen Eigenschaften.- 3.3 Die Gauß-Abbildung in lokalen Koordinaten.- 3.4 Vektorfelder.- 3.5 Regelflächen und Minimalflächen.- 4 Die innere Geometrie von Flächen.- 4.1 Einleitung.- 4.2 Isometrie. Konforme Abbildungen.- 4.3 Der Satz von Gauß und die Verträglichkeitsbedingungen.- 4.4 Parallelverschiebung. Geodätische.- 4.5 Der Satz von Gauß-Bonnet und seine Anwendungen.- 4.6 Die Exponentialabbildung. Geodätische Polarkoordinaten.- 4.7 Weitere Eigenschaften von Geodätischen. Konvexe Umgebungen.- Anhang: Beweise der Fundamentalsätze der lokalen Kurven-und Flächentheorie.- Hinweise und Lösungen.- Kommentiertes Literaturverzeichnis.- Namen-und Sachwortverzeichnis.
Details
Erscheinungsjahr: 1983
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: vieweg studium; Aufbaukurs Mathematik
Inhalt: 263 S.
64 s/w Illustr.
263 S. 64 Abb.
ISBN-13: 9783528072551
ISBN-10: 3528072555
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Carmo, Manfredo P. ˜doœ
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
vieweg studium; Aufbaukurs Mathematik
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 244 x 170 x 16 mm
Von/Mit: Manfredo P. ˜doœ Carmo
Erscheinungsdatum: 01.01.1983
Gewicht: 0,488 kg
Artikel-ID: 105722713
Zusammenfassung
(Aufbaukurs Mathematik)
Inhaltsverzeichnis
1 Kurven.- 1.1 Einleitung.- 1.2 Parametrisierte Kurven.- 1.3 Reguläre Kurven. Bogenlänge.- 1.4 Das Vektorprodukt in ?3.- 1.5 Die lokale Theorie von Kurven, die nach der Bogenlänge parametrisiert sind.- 1.6 Die lokale kanonische Form.- 1.7 Globale Eigenschaften ebener Kurven.- 2 Reguläre Flächen.- 2.1 Einleitung.- 2.2 Reguläre Flächen. Urbilder regulärer Werte.- 2.3 Parameterwechsel. Differenzierbare Funktionen auf Flächen.- 2.4 Die Tangentialebene. Das Differential einer Abbildung.- 2.5 Die erste Fundamentalform. Flächeninhalt.- 2.6 Orientierung von Flächen.- 2.7 Eine Charakterisierung kompakter orientierbarer Flächen.- 2.8 Eine geometrische Definition des Flächeninhalts.- 3 Die Geometrie der Gauß-Abbildung.- 3.1 Einleitung.- 3.2 Die Definition der Gauß-Abbildung und ihre fundamentalen Eigenschaften.- 3.3 Die Gauß-Abbildung in lokalen Koordinaten.- 3.4 Vektorfelder.- 3.5 Regelflächen und Minimalflächen.- 4 Die innere Geometrie von Flächen.- 4.1 Einleitung.- 4.2 Isometrie. Konforme Abbildungen.- 4.3 Der Satz von Gauß und die Verträglichkeitsbedingungen.- 4.4 Parallelverschiebung. Geodätische.- 4.5 Der Satz von Gauß-Bonnet und seine Anwendungen.- 4.6 Die Exponentialabbildung. Geodätische Polarkoordinaten.- 4.7 Weitere Eigenschaften von Geodätischen. Konvexe Umgebungen.- Anhang: Beweise der Fundamentalsätze der lokalen Kurven-und Flächentheorie.- Hinweise und Lösungen.- Kommentiertes Literaturverzeichnis.- Namen-und Sachwortverzeichnis.
Details
Erscheinungsjahr: 1983
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: vieweg studium; Aufbaukurs Mathematik
Inhalt: 263 S.
64 s/w Illustr.
263 S. 64 Abb.
ISBN-13: 9783528072551
ISBN-10: 3528072555
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Carmo, Manfredo P. ˜doœ
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
vieweg studium; Aufbaukurs Mathematik
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 244 x 170 x 16 mm
Von/Mit: Manfredo P. ˜doœ Carmo
Erscheinungsdatum: 01.01.1983
Gewicht: 0,488 kg
Artikel-ID: 105722713
Sicherheitshinweis