Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Developing AI Applications
An Introduction
Taschenbuch von Metin Karatas
Sprache: Englisch

42,15 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung

It's time to get practical about AI. Move past playing around with chatbots and plugging your data into others' applications-learn how to create your own! Walk through key AI methods like decision trees, convolutional layers, cluster analysis, and more. Get your hands dirty with simple no-code exercises and then apply that knowledge to more complex (but still beginner-friendly!) examples. With information on installing KNIME and using tools like AutoKeras, ChatGPT, and DALL-E, this guide will let you do more with AI!

Highlights include:

1) Python
2) KNIME
3) ChatGPT
4) DALL-E
5) Artificial neural networks (ANN)
6) Decision trees
7) Convolutional layers
8) Transfer learning
9) Anomaly detection
10) Text and image classification
11) Cluster analysis
12) Reinforcement learning

It's time to get practical about AI. Move past playing around with chatbots and plugging your data into others' applications-learn how to create your own! Walk through key AI methods like decision trees, convolutional layers, cluster analysis, and more. Get your hands dirty with simple no-code exercises and then apply that knowledge to more complex (but still beginner-friendly!) examples. With information on installing KNIME and using tools like AutoKeras, ChatGPT, and DALL-E, this guide will let you do more with AI!

Highlights include:

1) Python
2) KNIME
3) ChatGPT
4) DALL-E
5) Artificial neural networks (ANN)
6) Decision trees
7) Convolutional layers
8) Transfer learning
9) Anomaly detection
10) Text and image classification
11) Cluster analysis
12) Reinforcement learning

Zusammenfassung
Work with neural networks, transfer learning, anomaly detection, reinforcement learning, and more
Inhaltsverzeichnis
1 ... Introduction ... 15

1.1 ... What Does This Book Offer? ... 15

1.2 ... What Is Artificial Intelligence? ... 17

1.3 ... The History of AI: A Brief Overview ... 18

1.4 ... Development Tools Used in This Book ... 20

2 ... Installation ... 25

2.1 ... Anaconda Distribution ... 25

2.2 ... KNIME ... 30

3 ... Artificial Neural Networks ... 39

3.1 ... Classification ... 40

3.2 ... The Recipe ... 41

3.3 ... Building ANNs ... 45

3.4 ... Structure of an Artificial Neuron ... 47

3.5 ... Feed Forward ... 48

3.6 ... Back Propagation ... 51

3.7 ... Updating the Weights ... 53

3.8 ... ANN for Classification ... 55

3.9 ... Hyperparameters and Overfitting ... 63

3.10 ... Dealing with Nonnumerical Data ... 65

3.11 ... Dealing with Data Gaps ... 67

3.12 ... Correlation versus Causality ... 69

3.13 ... Standardization of the Data ... 76

3.14 ... Regression ... 78

3.15 ... Deployment ... 81

3.16 ... Exercises ... 85

4 ... Decision Trees ... 89

4.1 ... Simple Decision Trees ... 90

4.2 ... Boosting ... 100

4.3 ... XGBoost Regressor ... 109

4.4 ... Deployment ... 110

4.5 ... Decision Trees Using Orange ... 111

4.6 ... Exercises ... 115

5 ... Convolutional Layers and Images ... 117

5.1 ... Simple Image Classification ... 118

5.2 ... Hyperparameter Optimization Using Early Stopping and KerasTuner ... 123

5.3 ... Convolutional Neural Network ... 128

5.4 ... Image Classification Using CIFAR-10 ... 134

5.5 ... Using Pretrained Networks ... 137

5.6 ... Exercises ... 140

6 ... Transfer Learning ... 141

6.1 ... How It Works ... 143

6.2 ... Exercises ... 150

7 ... Anomaly Detection ... 151

7.1 ... Unbalanced Data ... 152

7.2 ... Resampling ... 156

7.3 ... Autoencoders ... 158

7.4 ... Exercises ... 164

8 ... Text Classification ... 165

8.1 ... Embedding Layer ... 165

8.2 ... GlobalAveragePooling1D Layer ... 168

8.3 ... Text Vectorization ... 170

8.4 ... Analysis of the Relationships ... 173

8.5 ... Classifying Large Amounts of Data ... 177

8.6 ... Exercises ... 180

9 ... Cluster Analysis ... 181

9.1 ... Graphical Analysis of the Data ... 182

9.2 ... The k-Means Clustering Algorithm ... 186

9.3 ... The Finished Program ... 189

9.4 ... Exercises ... 192

10 ... AutoKeras ... 193

10.1 ... Classification ... 194

10.2 ... Regression ... 195

10.3 ... Image Classification ... 196

10.4 ... Text Classification ... 199

10.5 ... Exercises ... 202

11 ... Visual Programming Using KNIME ... 203

11.1 ... Simple ANNs ... 204

11.2 ... XGBoost ... 223

11.3 ... Image Classification Using a Pretrained Model ... 227

11.4 ... Transfer Learning ... 232

11.5 ... Autoencoder ... 237

11.6 ... Text Classification ... 245

11.7 ... AutoML ... 249

11.8 ... Cluster Analysis ... 253

11.9 ... Time Series Analysis ... 257

11.10 ... Text Generation ... 271

11.11 ... Further Information on KNIME ... 277

11.12 ... Exercises ... 278

12 ... Reinforcement Learning ... 281

12.1 ... Q-Learning ... 282

12.2 ... Python Knowledge Required for the Game ... 287

12.3 ... Trainings ... 292

12.4 ... Test ... 294

12.5 ... Outlook ... 295

12.6 ... Exercises ... 296

13 ... Genetic Algorithms ... 297

13.1 ... The Algorithm ... 298

13.2 ... Example of a Sorted List ... 301

13.3 ... Example of Equation Systems ... 304

13.4 ... Real-Life Sample Application ... 306

13.5 ... Exercises ... 309

14 ... ChatGPT and GPT-4 ... 311

14.1 ... Prompt Engineering ... 313

14.2 ... The ChatGPT Programming Interface ... 328

14.3 ... Exercise 1: Math Support ... 344

15 ... DALL-E and Successor Models ... 345

15.1 ... DALL-E 2 ... 345

15.2 ... DALL-E 3 ... 350

15.3 ... Programming Interface ... 352

15.4 ... Exercise 1: DALL-E API with Moderation ... 357

16 ... Outlook ... 359

... Appendices ... 361

A ... Exercise Solutions ... 363

A.1 ... Chapter 3 ... 363

A.2 ... Chapter 4 ... 368

A.3 ... Chapter 6 ... 371

A.4 ... Chapter 7 ... 373

A.5 ... Chapter 8 ... 376

A.6 ... Chapter 9 ... 379

A.7 ... Chapter 10 ... 381

A.8 ... Chapter 11 ... 384

A.9 ... Chapter 12 ... 389

A.10 ... Chapter 13 ... 390

A.11 ... Chapter 14 ... 392

A.12 ... Chapter 15 ... 393
B ... References ... 395

C ... The Author ... 397

... Index ... 399
Details
Erscheinungsjahr: 2024
Fachbereich: Programmiersprachen
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Rheinwerk Computing
Inhalt: 402 S.
ISBN-13: 9781493226016
ISBN-10: 1493226010
Sprache: Englisch
Herstellernummer: 459/22601
Einband: Klappenbroschur
Autor: Karatas, Metin
Hersteller: Rheinwerk Verlag GmbH
Rheinwerk Publishing Inc.
Verantwortliche Person für die EU: Rheinwerk Verlag GmbH, Rheinwerkallee 4, D-53227 Bonn, service@rheinwerk-verlag.de
Maße: 248 x 182 x 22 mm
Von/Mit: Metin Karatas
Erscheinungsdatum: 01.11.2024
Gewicht: 0,738 kg
Artikel-ID: 128705861
Zusammenfassung
Work with neural networks, transfer learning, anomaly detection, reinforcement learning, and more
Inhaltsverzeichnis
1 ... Introduction ... 15

1.1 ... What Does This Book Offer? ... 15

1.2 ... What Is Artificial Intelligence? ... 17

1.3 ... The History of AI: A Brief Overview ... 18

1.4 ... Development Tools Used in This Book ... 20

2 ... Installation ... 25

2.1 ... Anaconda Distribution ... 25

2.2 ... KNIME ... 30

3 ... Artificial Neural Networks ... 39

3.1 ... Classification ... 40

3.2 ... The Recipe ... 41

3.3 ... Building ANNs ... 45

3.4 ... Structure of an Artificial Neuron ... 47

3.5 ... Feed Forward ... 48

3.6 ... Back Propagation ... 51

3.7 ... Updating the Weights ... 53

3.8 ... ANN for Classification ... 55

3.9 ... Hyperparameters and Overfitting ... 63

3.10 ... Dealing with Nonnumerical Data ... 65

3.11 ... Dealing with Data Gaps ... 67

3.12 ... Correlation versus Causality ... 69

3.13 ... Standardization of the Data ... 76

3.14 ... Regression ... 78

3.15 ... Deployment ... 81

3.16 ... Exercises ... 85

4 ... Decision Trees ... 89

4.1 ... Simple Decision Trees ... 90

4.2 ... Boosting ... 100

4.3 ... XGBoost Regressor ... 109

4.4 ... Deployment ... 110

4.5 ... Decision Trees Using Orange ... 111

4.6 ... Exercises ... 115

5 ... Convolutional Layers and Images ... 117

5.1 ... Simple Image Classification ... 118

5.2 ... Hyperparameter Optimization Using Early Stopping and KerasTuner ... 123

5.3 ... Convolutional Neural Network ... 128

5.4 ... Image Classification Using CIFAR-10 ... 134

5.5 ... Using Pretrained Networks ... 137

5.6 ... Exercises ... 140

6 ... Transfer Learning ... 141

6.1 ... How It Works ... 143

6.2 ... Exercises ... 150

7 ... Anomaly Detection ... 151

7.1 ... Unbalanced Data ... 152

7.2 ... Resampling ... 156

7.3 ... Autoencoders ... 158

7.4 ... Exercises ... 164

8 ... Text Classification ... 165

8.1 ... Embedding Layer ... 165

8.2 ... GlobalAveragePooling1D Layer ... 168

8.3 ... Text Vectorization ... 170

8.4 ... Analysis of the Relationships ... 173

8.5 ... Classifying Large Amounts of Data ... 177

8.6 ... Exercises ... 180

9 ... Cluster Analysis ... 181

9.1 ... Graphical Analysis of the Data ... 182

9.2 ... The k-Means Clustering Algorithm ... 186

9.3 ... The Finished Program ... 189

9.4 ... Exercises ... 192

10 ... AutoKeras ... 193

10.1 ... Classification ... 194

10.2 ... Regression ... 195

10.3 ... Image Classification ... 196

10.4 ... Text Classification ... 199

10.5 ... Exercises ... 202

11 ... Visual Programming Using KNIME ... 203

11.1 ... Simple ANNs ... 204

11.2 ... XGBoost ... 223

11.3 ... Image Classification Using a Pretrained Model ... 227

11.4 ... Transfer Learning ... 232

11.5 ... Autoencoder ... 237

11.6 ... Text Classification ... 245

11.7 ... AutoML ... 249

11.8 ... Cluster Analysis ... 253

11.9 ... Time Series Analysis ... 257

11.10 ... Text Generation ... 271

11.11 ... Further Information on KNIME ... 277

11.12 ... Exercises ... 278

12 ... Reinforcement Learning ... 281

12.1 ... Q-Learning ... 282

12.2 ... Python Knowledge Required for the Game ... 287

12.3 ... Trainings ... 292

12.4 ... Test ... 294

12.5 ... Outlook ... 295

12.6 ... Exercises ... 296

13 ... Genetic Algorithms ... 297

13.1 ... The Algorithm ... 298

13.2 ... Example of a Sorted List ... 301

13.3 ... Example of Equation Systems ... 304

13.4 ... Real-Life Sample Application ... 306

13.5 ... Exercises ... 309

14 ... ChatGPT and GPT-4 ... 311

14.1 ... Prompt Engineering ... 313

14.2 ... The ChatGPT Programming Interface ... 328

14.3 ... Exercise 1: Math Support ... 344

15 ... DALL-E and Successor Models ... 345

15.1 ... DALL-E 2 ... 345

15.2 ... DALL-E 3 ... 350

15.3 ... Programming Interface ... 352

15.4 ... Exercise 1: DALL-E API with Moderation ... 357

16 ... Outlook ... 359

... Appendices ... 361

A ... Exercise Solutions ... 363

A.1 ... Chapter 3 ... 363

A.2 ... Chapter 4 ... 368

A.3 ... Chapter 6 ... 371

A.4 ... Chapter 7 ... 373

A.5 ... Chapter 8 ... 376

A.6 ... Chapter 9 ... 379

A.7 ... Chapter 10 ... 381

A.8 ... Chapter 11 ... 384

A.9 ... Chapter 12 ... 389

A.10 ... Chapter 13 ... 390

A.11 ... Chapter 14 ... 392

A.12 ... Chapter 15 ... 393
B ... References ... 395

C ... The Author ... 397

... Index ... 399
Details
Erscheinungsjahr: 2024
Fachbereich: Programmiersprachen
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Rheinwerk Computing
Inhalt: 402 S.
ISBN-13: 9781493226016
ISBN-10: 1493226010
Sprache: Englisch
Herstellernummer: 459/22601
Einband: Klappenbroschur
Autor: Karatas, Metin
Hersteller: Rheinwerk Verlag GmbH
Rheinwerk Publishing Inc.
Verantwortliche Person für die EU: Rheinwerk Verlag GmbH, Rheinwerkallee 4, D-53227 Bonn, service@rheinwerk-verlag.de
Maße: 248 x 182 x 22 mm
Von/Mit: Metin Karatas
Erscheinungsdatum: 01.11.2024
Gewicht: 0,738 kg
Artikel-ID: 128705861
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte