Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Deep Learning mit TensorFlow, Keras und TensorFlow.js
Über 450 Seiten Einstieg, Konzepte, KI-Projekte. Aktuell zu TensorFlow 2
Buch von Matthieu Deru (u. a.)
Sprache: Deutsch

39,90 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung

Deep Learning - eine Schlüsseltechnologie der Künstlichen Intelligenz. Neuronale Netze bringen Höchstleistung, wenn sie zu Deep-Learning-Modellen verknüpft werden - vorausgesetzt, Sie machen es richtig. Große und gute Trainingsdaten beschaffen, geschickt implementieren ... lernen Sie hier, wie Sie die mächtige Technologie wirklich in Ihren Dienst nehmen. Unsere Autoren zeigen Ihnen sowohl die Arbeit mit Python und Keras als auch für den Browser mit JavaScript, HTML5 und [...].

Aus dem Inhalt:

  • Deep-Learning-Grundkonzepte
  • Installation der Frameworks
  • Vorgefertigte Modelle verwenden
  • Datenanalyse und -vorbereitung
  • Convolutional Networks, LSTM, RNN, Pooling ...
  • Aufgaben eines Modells richtig festlegen
  • Eigene Modelle trainieren
  • Overfitting und Underfitting vermeiden
  • Ergebnisse visualisieren

Deep Learning - eine Schlüsseltechnologie der Künstlichen Intelligenz. Neuronale Netze bringen Höchstleistung, wenn sie zu Deep-Learning-Modellen verknüpft werden - vorausgesetzt, Sie machen es richtig. Große und gute Trainingsdaten beschaffen, geschickt implementieren ... lernen Sie hier, wie Sie die mächtige Technologie wirklich in Ihren Dienst nehmen. Unsere Autoren zeigen Ihnen sowohl die Arbeit mit Python und Keras als auch für den Browser mit JavaScript, HTML5 und [...].

Aus dem Inhalt:

  • Deep-Learning-Grundkonzepte
  • Installation der Frameworks
  • Vorgefertigte Modelle verwenden
  • Datenanalyse und -vorbereitung
  • Convolutional Networks, LSTM, RNN, Pooling ...
  • Aufgaben eines Modells richtig festlegen
  • Eigene Modelle trainieren
  • Overfitting und Underfitting vermeiden
  • Ergebnisse visualisieren
Über den Autor
Dr. Matthieu Deru ist Senior Software-Engineer (R&D) und UX-Designer für interaktive Systeme am Deutschen Forschungszentrum für Künstliche Intelligenz GmbH (DFKI). Seine Projekterfahrung umfasst Themengebiete, die so vielseitig sind wie die Anwendungsfelder der KI, von intelligenten Benutzerschnittstellen bis zu komplexen Vorhersagenmodellen für die Elektromobilität.
Zusammenfassung
Inkl. [...], TensorBoard, [...] u. v. m.
Inhaltsverzeichnis
1. Einführung ... 15

1.1 ... Über dieses Buch ... 15

1.2 ... Ein Einblick in Deep Learning ... 17

1.3 ... Deep Learning im Alltag und in der Zukunft ... 19

2. Machine Learning und Deep Learning ... 33

2.1 ... Einführung ... 33

2.2 ... Lernansätze beim Machine Learning ... 38

2.3 ... Deep-Learning-Frameworks ... 44

2.4 ... Datenbeschaffung ... 46

2.5 ... Datasets ... 48

2.6 ... Zusammenfassung ... 65

3. Neuronale Netze ... 67

3.1 ... Aufbau und Prinzip ... 67

3.2 ... Lernprozess neuronaler Netze ... 73

3.3 ... Datenaufbereitung ... 81

3.4 ... Ein einfaches neuronales Netz ... 82

3.5 ... Netzarchitekturen ... 91

3.6 ... Bekannte Netze ... 98

3.7 ... Fallstricke beim Deep Learning ... 101

3.8 ... Zusammenfassung ... 106

4. Python und Machine-Learning-Bibliotheken ... 107

4.1 ... Installation von Python 3.7 mit Anaconda ... 108

4.2 ... Alternative Installationen von Python 3.7 ... 113

4.3 ... Programmierumgebungen ... 116

4.4 ... Jupyter Notebook ... 121

4.5 ... Python-Bibliotheken für das Machine Learning ... 126

4.6 ... Nützliche Routinen mit NumPy und Scikit-learn für ML ... 129

4.7 ... Ein zweites Machine-Learning-Beispiel ... 133

4.8 ... Zusammenfassung ... 137

5. TensorFlow: Installation und Grundlagen ... 139

5.1 ... Einführung ... 139

5.2 ... Installation ... 143

5.3 ... Google Colab: TensorFlow ohne Installation benutzen ... 153

5.4 ... Tensoren ... 154

5.5 ... Graphen ... 160

5.6 ... Benutzung der CPU und GPU ... 171

5.7 ... Erstes Beispiel: Eine lineare Regression ... 174

5.8 ... Von TensorFlow 1.x zu TensorFlow 2 ... 180

5.9 ... Zusammenfassung ... 183

6. Keras ... 185

6.1 ... Von Keras zu [...] ... 185

6.2 ... Erster Kontakt ... 189

6.3 ... Modelle trainieren ... 191

6.4 ... Modelle evaluieren ... 193

6.5 ... Modelle laden und exportieren ... 194

6.6 ... Keras Applications ... 197

6.7 ... Keras Callbacks ... 198

6.8 ... Projekt 1: Iris-Klassifikation mit Keras ... 200

6.9 ... Projekt 2: CNNs mit Fashion-MNIST ... 204

6.10 ... Projekt 3: Ein einfaches CNN mit dem CIFAR-10-Dataset ... 213

6.11 ... Projekt 4: Aktienkursvorhersage mit RNNs und LSTMs ... 220

6.12 ... Zusammenfassung ... 226

7. Netze und Metriken visualisieren ... 227

7.1 ... TensorBoard ... 228

7.2 ... [...] ... 246

7.3 ... Debugging mit TensorBoard (nur TF 1.x) ... 248

7.4 ... Der TensorBoard-Debugger mit Keras (nur TF 1.x) ... 257

7.5 ... Visualisierung mit Keras ... 259

7.6 ... Visualisierung von CNNs mit Quiver (nur mit [...]) ... 267

7.7 ... Interaktive Visualisierung mit Keras-Callbacks, [...] und HTML5 selbst implementieren ... 271

7.8 ... Weitere Visualisierungsmöglichkeiten ... 281

8. [...] ... 285

8.1 ... Anwendungsfälle ... 285

8.2 ... Installation von BrowserSync ... 288

8.3 ... Installation von [...] ... 290

8.4 ... Konzepte ... 293

8.5 ... Ihr erstes Modell mit [...]: Eine quadratische Regression ... 304

8.6 ... Laden und Speichern von Modellen ... 318

8.7 ... PoseNet-Modell mit [...] ... 327

8.8 ... Eine intelligente Smart-Home-Komponente mit [...] und [...] ... 343

8.9 ... [...] noch einfacher: [...] ... 356

9. Praxisbeispiele ... 361

9.1 ... Projekt 1: Verkehrszeichenerkennung mit Keras ... 363

9.2 ... Projekt 2: Intelligente Spurerkennung mit Keras und OpenCV ... 379

9.3 ... Projekt 3: Erkennung der Umgebung mit YOLO und [...] bzw. [...] ... 392

9.4 ... Projekt 4: Haus oder Katze? Vorgefertigte Modelle mit Keras benutzen -- VGG-19 ... 403

9.5 ... Projekt 5: Buchstaben- und Ziffernerkennung mit dem Chars74K-Dataset und Datenaugmentierung ... 410

9.6 ... Projekt 6: Stimmungsanalyse mit Keras ... 418

9.7 ... Projekt 7: Sentiment-Analyse mit [...] ... 425

9.8 ... Projekt 8: Benutzung von TensorFlow Hub ... 429

9.9 ... Projekt 9: Hyperparameter-Tuning mit TensorBoard ... 437

9.10 ... Projekt 10: CNN mit Fashion-MNIST und TensorFlow-Estimators (nur TF 1.x) ... 442

9.11 ... Allgemeine Tipps und Tricks ... 455

10. Ausblick ... 463

10.1 ... Deep Learning in der Cloud ... 463

10.2 ... Bildgenerierung mit Deep Learning ... 471

10.3 ... Musik mit Deep Learning ... 476

10.4 ... Videogenerierung mit Deep Learning ... 478

10.5 ... Deep Learning einfacher gemacht ... 480

11. Fazit ... 489

Index ... 492
Details
Erscheinungsjahr: 2020
Fachbereich: Programmiersprachen
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Rheinwerk Computing
Inhalt: 496 S.
ISBN-13: 9783836274258
ISBN-10: 3836274256
Sprache: Deutsch
Herstellernummer: 459/07425
Einband: Gebunden
Autor: Deru, Matthieu
Ndiaye, Alassane
Auflage: 2. Auflage
Hersteller: Rheinwerk
Rheinwerk Verlag GmbH
Verantwortliche Person für die EU: Rheinwerk Verlag GmbH, Rheinwerkallee 4, D-53227 Bonn, service@rheinwerk-verlag.de
Maße: 247 x 176 x 33 mm
Von/Mit: Matthieu Deru (u. a.)
Erscheinungsdatum: 28.04.2020
Gewicht: 1,025 kg
Artikel-ID: 117902277
Über den Autor
Dr. Matthieu Deru ist Senior Software-Engineer (R&D) und UX-Designer für interaktive Systeme am Deutschen Forschungszentrum für Künstliche Intelligenz GmbH (DFKI). Seine Projekterfahrung umfasst Themengebiete, die so vielseitig sind wie die Anwendungsfelder der KI, von intelligenten Benutzerschnittstellen bis zu komplexen Vorhersagenmodellen für die Elektromobilität.
Zusammenfassung
Inkl. [...], TensorBoard, [...] u. v. m.
Inhaltsverzeichnis
1. Einführung ... 15

1.1 ... Über dieses Buch ... 15

1.2 ... Ein Einblick in Deep Learning ... 17

1.3 ... Deep Learning im Alltag und in der Zukunft ... 19

2. Machine Learning und Deep Learning ... 33

2.1 ... Einführung ... 33

2.2 ... Lernansätze beim Machine Learning ... 38

2.3 ... Deep-Learning-Frameworks ... 44

2.4 ... Datenbeschaffung ... 46

2.5 ... Datasets ... 48

2.6 ... Zusammenfassung ... 65

3. Neuronale Netze ... 67

3.1 ... Aufbau und Prinzip ... 67

3.2 ... Lernprozess neuronaler Netze ... 73

3.3 ... Datenaufbereitung ... 81

3.4 ... Ein einfaches neuronales Netz ... 82

3.5 ... Netzarchitekturen ... 91

3.6 ... Bekannte Netze ... 98

3.7 ... Fallstricke beim Deep Learning ... 101

3.8 ... Zusammenfassung ... 106

4. Python und Machine-Learning-Bibliotheken ... 107

4.1 ... Installation von Python 3.7 mit Anaconda ... 108

4.2 ... Alternative Installationen von Python 3.7 ... 113

4.3 ... Programmierumgebungen ... 116

4.4 ... Jupyter Notebook ... 121

4.5 ... Python-Bibliotheken für das Machine Learning ... 126

4.6 ... Nützliche Routinen mit NumPy und Scikit-learn für ML ... 129

4.7 ... Ein zweites Machine-Learning-Beispiel ... 133

4.8 ... Zusammenfassung ... 137

5. TensorFlow: Installation und Grundlagen ... 139

5.1 ... Einführung ... 139

5.2 ... Installation ... 143

5.3 ... Google Colab: TensorFlow ohne Installation benutzen ... 153

5.4 ... Tensoren ... 154

5.5 ... Graphen ... 160

5.6 ... Benutzung der CPU und GPU ... 171

5.7 ... Erstes Beispiel: Eine lineare Regression ... 174

5.8 ... Von TensorFlow 1.x zu TensorFlow 2 ... 180

5.9 ... Zusammenfassung ... 183

6. Keras ... 185

6.1 ... Von Keras zu [...] ... 185

6.2 ... Erster Kontakt ... 189

6.3 ... Modelle trainieren ... 191

6.4 ... Modelle evaluieren ... 193

6.5 ... Modelle laden und exportieren ... 194

6.6 ... Keras Applications ... 197

6.7 ... Keras Callbacks ... 198

6.8 ... Projekt 1: Iris-Klassifikation mit Keras ... 200

6.9 ... Projekt 2: CNNs mit Fashion-MNIST ... 204

6.10 ... Projekt 3: Ein einfaches CNN mit dem CIFAR-10-Dataset ... 213

6.11 ... Projekt 4: Aktienkursvorhersage mit RNNs und LSTMs ... 220

6.12 ... Zusammenfassung ... 226

7. Netze und Metriken visualisieren ... 227

7.1 ... TensorBoard ... 228

7.2 ... [...] ... 246

7.3 ... Debugging mit TensorBoard (nur TF 1.x) ... 248

7.4 ... Der TensorBoard-Debugger mit Keras (nur TF 1.x) ... 257

7.5 ... Visualisierung mit Keras ... 259

7.6 ... Visualisierung von CNNs mit Quiver (nur mit [...]) ... 267

7.7 ... Interaktive Visualisierung mit Keras-Callbacks, [...] und HTML5 selbst implementieren ... 271

7.8 ... Weitere Visualisierungsmöglichkeiten ... 281

8. [...] ... 285

8.1 ... Anwendungsfälle ... 285

8.2 ... Installation von BrowserSync ... 288

8.3 ... Installation von [...] ... 290

8.4 ... Konzepte ... 293

8.5 ... Ihr erstes Modell mit [...]: Eine quadratische Regression ... 304

8.6 ... Laden und Speichern von Modellen ... 318

8.7 ... PoseNet-Modell mit [...] ... 327

8.8 ... Eine intelligente Smart-Home-Komponente mit [...] und [...] ... 343

8.9 ... [...] noch einfacher: [...] ... 356

9. Praxisbeispiele ... 361

9.1 ... Projekt 1: Verkehrszeichenerkennung mit Keras ... 363

9.2 ... Projekt 2: Intelligente Spurerkennung mit Keras und OpenCV ... 379

9.3 ... Projekt 3: Erkennung der Umgebung mit YOLO und [...] bzw. [...] ... 392

9.4 ... Projekt 4: Haus oder Katze? Vorgefertigte Modelle mit Keras benutzen -- VGG-19 ... 403

9.5 ... Projekt 5: Buchstaben- und Ziffernerkennung mit dem Chars74K-Dataset und Datenaugmentierung ... 410

9.6 ... Projekt 6: Stimmungsanalyse mit Keras ... 418

9.7 ... Projekt 7: Sentiment-Analyse mit [...] ... 425

9.8 ... Projekt 8: Benutzung von TensorFlow Hub ... 429

9.9 ... Projekt 9: Hyperparameter-Tuning mit TensorBoard ... 437

9.10 ... Projekt 10: CNN mit Fashion-MNIST und TensorFlow-Estimators (nur TF 1.x) ... 442

9.11 ... Allgemeine Tipps und Tricks ... 455

10. Ausblick ... 463

10.1 ... Deep Learning in der Cloud ... 463

10.2 ... Bildgenerierung mit Deep Learning ... 471

10.3 ... Musik mit Deep Learning ... 476

10.4 ... Videogenerierung mit Deep Learning ... 478

10.5 ... Deep Learning einfacher gemacht ... 480

11. Fazit ... 489

Index ... 492
Details
Erscheinungsjahr: 2020
Fachbereich: Programmiersprachen
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Rheinwerk Computing
Inhalt: 496 S.
ISBN-13: 9783836274258
ISBN-10: 3836274256
Sprache: Deutsch
Herstellernummer: 459/07425
Einband: Gebunden
Autor: Deru, Matthieu
Ndiaye, Alassane
Auflage: 2. Auflage
Hersteller: Rheinwerk
Rheinwerk Verlag GmbH
Verantwortliche Person für die EU: Rheinwerk Verlag GmbH, Rheinwerkallee 4, D-53227 Bonn, service@rheinwerk-verlag.de
Maße: 247 x 176 x 33 mm
Von/Mit: Matthieu Deru (u. a.)
Erscheinungsdatum: 28.04.2020
Gewicht: 1,025 kg
Artikel-ID: 117902277
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte