Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Data Science
A First Introduction
Taschenbuch von Tiffany Timbers (u. a.)
Sprache: Englisch

115,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Data Science: A First Introduction focuses on using the R programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference.

The text emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. All source code is available online, demonstrating the use of good reproducible project workflows.

Based on educational research and active learning principles, the book uses a modern approach to R and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The book will leave readers well-prepared for data science projects.

The book is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates in the University of British Columbia's DSCI100: Introduction to Data Science course.
Data Science: A First Introduction focuses on using the R programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference.

The text emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. All source code is available online, demonstrating the use of good reproducible project workflows.

Based on educational research and active learning principles, the book uses a modern approach to R and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The book will leave readers well-prepared for data science projects.

The book is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates in the University of British Columbia's DSCI100: Introduction to Data Science course.
Über den Autor

Tiffany Timbers is an Assistant Professor of Teaching in the Department of Statistics and Co-Director for the Master of Data Science program (Vancouver Option) at the University of British Columbia.

Trevor Campbell is an Assistant Professor in the Department of Statistics at the University of British Columbia.

Melissa Lee is an Assistant Professor of Teaching in the Department of Statistics at the University of British Columbia

Inhaltsverzeichnis

1. R and the tidyverse, 2. Reading in data locally and from the web, 3. Cleaning and wrangling data, 4. Effective data visualization, 5. Classification I: training & predicting, 6. Classification II: evaluation & tuning, 7. Regression I: K-nearest neighbors, 8. Regression II: linear regression, 9. Clustering, 10. Statistical inference, 11. Combining code and text with Jupyter, 12. Collaboration with version control, 13. Setting up your computer

Details
Erscheinungsjahr: 2022
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9780367524685
ISBN-10: 0367524686
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Timbers, Tiffany
Campbell, Trevor
Lee, Melissa
Hersteller: Chapman and Hall/CRC
Verantwortliche Person für die EU: Books on Demand GmbH, In de Tarpen 42, D-22848 Norderstedt, info@bod.de
Maße: 254 x 178 x 24 mm
Von/Mit: Tiffany Timbers (u. a.)
Erscheinungsdatum: 15.07.2022
Gewicht: 0,829 kg
Artikel-ID: 120841409
Über den Autor

Tiffany Timbers is an Assistant Professor of Teaching in the Department of Statistics and Co-Director for the Master of Data Science program (Vancouver Option) at the University of British Columbia.

Trevor Campbell is an Assistant Professor in the Department of Statistics at the University of British Columbia.

Melissa Lee is an Assistant Professor of Teaching in the Department of Statistics at the University of British Columbia

Inhaltsverzeichnis

1. R and the tidyverse, 2. Reading in data locally and from the web, 3. Cleaning and wrangling data, 4. Effective data visualization, 5. Classification I: training & predicting, 6. Classification II: evaluation & tuning, 7. Regression I: K-nearest neighbors, 8. Regression II: linear regression, 9. Clustering, 10. Statistical inference, 11. Combining code and text with Jupyter, 12. Collaboration with version control, 13. Setting up your computer

Details
Erscheinungsjahr: 2022
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9780367524685
ISBN-10: 0367524686
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Timbers, Tiffany
Campbell, Trevor
Lee, Melissa
Hersteller: Chapman and Hall/CRC
Verantwortliche Person für die EU: Books on Demand GmbH, In de Tarpen 42, D-22848 Norderstedt, info@bod.de
Maße: 254 x 178 x 24 mm
Von/Mit: Tiffany Timbers (u. a.)
Erscheinungsdatum: 15.07.2022
Gewicht: 0,829 kg
Artikel-ID: 120841409
Sicherheitshinweis