Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Categorical Data Analysis and Multilevel Modeling Using R
Taschenbuch von Xing Liu
Sprache: Englisch

150,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung

Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. It offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication.

Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. It offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication.

Über den Autor

Xing Liu Ph.D., is a professor of educational research and assessment at Eastern Connecticut State University. He received his Ph.D. in measurement, evaluation, and assessment in the field of educational psychology from the University of Connecticut, Storrs. His interests include categorical data analysis, multilevel modeling, longitudinal data analysis, structural equation modeling, educational assessment, propensity score methods, data science, and Bayesian methods. He is the author of Applied Ordinal Logistic Regression Using Stata: From Single-Level to Multilevel Modeling (2016). His major publications focus on advanced statistical models. His articles have been recognized among the most popular papers published in the Journal of Modern Applied Statistical Methods (JMASM). Dr. Liu is the recipient of the Excellence Award in Creativity/Scholarship at Eastern Connecticut State University.

Inhaltsverzeichnis
Chapter 1. R Basics
Chapter 2. Review of Basic Statistics
Chapter 3. Logistic Regression for Binary Data
Chapter 4. Proportional Odds Models for Ordinal Response Variables
Chapter 5. Partial Proportional Odds Models and Generalized Ordinal Logistic Regression Models
Chapter 6. Other Ordinal Logistic Regression Models
Chapter 7. Multinomial Logistic Regression Models
Chapter 8. Poisson Regression Models
Chapter 9. Negative Binomial Regression Models and Zero-Inflated Models
Chapter 10. Multilevel Modeling for Continuous Response Variables
Chapter 11. Multilevel Modeling for Binary Response Variables
Chapter 12. Multilevel Modeling for Ordinal Response Variables
Chapter 13. Multilevel Modeling for Count Response Variables
Chapter 14. Multilevel Modeling for Nominal Response Variables
Chapter 15. Bayesian Generalized Linear Models
Chapter 16. Bayesian Multilevel Modeling of Categorical Response Variables
Details
Erscheinungsjahr: 2022
Fachbereich: Kommunikationswissenschaften
Genre: Importe, Medienwissenschaften
Rubrik: Wissenschaften
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781544324906
ISBN-10: 1544324901
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Liu, Xing
Hersteller: SAGE Publications Inc
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 188 x 231 x 40 mm
Von/Mit: Xing Liu
Erscheinungsdatum: 10.05.2022
Gewicht: 1,296 kg
Artikel-ID: 120532017
Über den Autor

Xing Liu Ph.D., is a professor of educational research and assessment at Eastern Connecticut State University. He received his Ph.D. in measurement, evaluation, and assessment in the field of educational psychology from the University of Connecticut, Storrs. His interests include categorical data analysis, multilevel modeling, longitudinal data analysis, structural equation modeling, educational assessment, propensity score methods, data science, and Bayesian methods. He is the author of Applied Ordinal Logistic Regression Using Stata: From Single-Level to Multilevel Modeling (2016). His major publications focus on advanced statistical models. His articles have been recognized among the most popular papers published in the Journal of Modern Applied Statistical Methods (JMASM). Dr. Liu is the recipient of the Excellence Award in Creativity/Scholarship at Eastern Connecticut State University.

Inhaltsverzeichnis
Chapter 1. R Basics
Chapter 2. Review of Basic Statistics
Chapter 3. Logistic Regression for Binary Data
Chapter 4. Proportional Odds Models for Ordinal Response Variables
Chapter 5. Partial Proportional Odds Models and Generalized Ordinal Logistic Regression Models
Chapter 6. Other Ordinal Logistic Regression Models
Chapter 7. Multinomial Logistic Regression Models
Chapter 8. Poisson Regression Models
Chapter 9. Negative Binomial Regression Models and Zero-Inflated Models
Chapter 10. Multilevel Modeling for Continuous Response Variables
Chapter 11. Multilevel Modeling for Binary Response Variables
Chapter 12. Multilevel Modeling for Ordinal Response Variables
Chapter 13. Multilevel Modeling for Count Response Variables
Chapter 14. Multilevel Modeling for Nominal Response Variables
Chapter 15. Bayesian Generalized Linear Models
Chapter 16. Bayesian Multilevel Modeling of Categorical Response Variables
Details
Erscheinungsjahr: 2022
Fachbereich: Kommunikationswissenschaften
Genre: Importe, Medienwissenschaften
Rubrik: Wissenschaften
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781544324906
ISBN-10: 1544324901
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Liu, Xing
Hersteller: SAGE Publications Inc
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 188 x 231 x 40 mm
Von/Mit: Xing Liu
Erscheinungsdatum: 10.05.2022
Gewicht: 1,296 kg
Artikel-ID: 120532017
Sicherheitshinweis