Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Biogas Plants
Waste Management, Energy Production and Carbon Footprint Reduction
Buch von Wojciech Czekala (u. a.)
Sprache: Englisch

177,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung

Biogas Plants

Comprehensive resource highlighting the global significance of biogas and reviewing the current status of biogas production.

Biogas Plants presents an overview of biogas production, starting from the substrates (characteristics, pretreatment, and storage), addressing technical and technological aspects of fermentation processes, and covering the environmental and agricultural significance of obtained digestate.

Written by a team of experts with extensive theoretical and practical experience in the areas of bio-waste, biogas plants, and reduction of greenhouse gas emissions, Biogas Plants discusses keys topics including:

  • Anaerobic digestion, including discussion of substrates and products
  • Advantages of biogas plants, with emphasis on their future potential for stable and controlled renewable energy
  • Global significance of the biogas sector, including its importance in electro-energy system stabilization, biogas plants for energy storage, bio-waste utilization, and biomethane production

A thorough and complete resource on the subject, Biogas Plants will appeal to academic researchers and industry scientists and engineers working in the fields of biogas, bio-waste, bioenergy, renewable resources, waste management and carbon reduction, along with process engineers, environmental engineers, biotechnologists, and agricultural scientists.

For more information on the Wiley Series in Renewable Resources, visit [...]

Biogas Plants

Comprehensive resource highlighting the global significance of biogas and reviewing the current status of biogas production.

Biogas Plants presents an overview of biogas production, starting from the substrates (characteristics, pretreatment, and storage), addressing technical and technological aspects of fermentation processes, and covering the environmental and agricultural significance of obtained digestate.

Written by a team of experts with extensive theoretical and practical experience in the areas of bio-waste, biogas plants, and reduction of greenhouse gas emissions, Biogas Plants discusses keys topics including:

  • Anaerobic digestion, including discussion of substrates and products
  • Advantages of biogas plants, with emphasis on their future potential for stable and controlled renewable energy
  • Global significance of the biogas sector, including its importance in electro-energy system stabilization, biogas plants for energy storage, bio-waste utilization, and biomethane production

A thorough and complete resource on the subject, Biogas Plants will appeal to academic researchers and industry scientists and engineers working in the fields of biogas, bio-waste, bioenergy, renewable resources, waste management and carbon reduction, along with process engineers, environmental engineers, biotechnologists, and agricultural scientists.

For more information on the Wiley Series in Renewable Resources, visit [...]

Über den Autor

Editor
Wojciech Czekäa, Associate Professor, Vice Dean of Science - Faculty of Environmental and Mechanical Engineering, Department of Biosystems Engineering, Poznä University of Life Sciences (PULS), Poland.

Series Editor
Christian Stevens, Faculty of Bioscience Engineering, Ghent University, Belgium.

Inhaltsverzeichnis
List of Contributors xvii Series Preface xxi 1 Anaerobic Digestion Process and Biogas Production 1Liangliang Wei, Weixin Zhao, Likui Feng, Jianju Li, Xinhui Xia, Hang Yu, and Yu Liu 1.1 Introduction 1 1.2 Basic Knowledges of AD Processes and Operations 2 1.2.1 Fundamental Mechanisms and Typical Processes of AD 2 1.2.2 Factors Affecting the AD Process of Biogas Production 4 1.2.2.1 Temperature 4 1.2.2.2 pH 5 1.2.2.3 Organic Loading Rate (OLR) 5 1.2.2.4 Carbon-Nitrogen Ratio 5 1.2.2.5 Inoculum-to-Substrate Ratio (ISR) 6 1.2.2.6 Solids Concentration 6 1.2.2.7 Hydraulic Retention Time (HRT) 6 1.3 Current Challenges of AD Process and Biogas Production 7 1.3.1 Ammonia Inhibition 7 1.3.2 Volatile Fatty Acid Inhibition 10 1.3.3 Psychrophilic Temperature Inhibition 12 1.4 Proposed Strategies for Enhanced Biogas Production 14 1.4.1 Promoting Direct Interspecies Electron Transfer via Conductive Materials Additive 14 1.4.2 Co-digestion of Different Substrates 16 1.4.3 Bioaugmentation 19 1.4.4 Bioelectrochemical System-Assisted AD 20 1.5 Techno-Economic and Environmental Assessment of Anaerobic Digestion for Biogas Production 22 1.5.1 Techno-Economic Analysis 22 1.5.2 Environmental Feasibility and Benefit Assessment 24 References 26 2 Pretreatment of Lignocellulosic Materials to Enhance Biogas Recovery 37Jonathan T. E. Lee, Nalok Dutta, To-Hung Tsui, Ee Y. Lim, Yanjun Dai, and Yen W. Tong 2.1 Introduction 37 2.1.1 Lignocellulosic Waste Material Production 38 2.1.2 Structural Insight of Lignocellulosic Materials 39 2.1.3 Biogas Production from Lignocellulosic Materials and the Need for Pretreatment 40 2.2 Available Pretreatment Technologies for Lignocellulosic Materials and the Corresponding Biogas Recovery Associated 41 2.2.1 Physical Pretreatment 41 2.2.1.1 Comminution 43 2.2.1.2 Microwave Thermal Pretreatment 43 2.2.1.3 Extrusion 44 2.2.1.4 Ultrasonication 45 2.2.2 Chemical Pretreatment 45 2.2.2.1 Acid Hydrolysis Pretreatment 45 2.2.2.2 Alkali Hydrolysis Pretreatment 47 2.2.2.3 Ionic Liquids Pretreatment 48 2.2.2.4 Deep Eutectic Solvents Pretreatment 48 2.2.2.5 Organosolvents Pretreatment 49 2.2.3 Biological Pretreatment 49 2.2.3.1 Enzymatic Pretreatment 50 2.2.3.2 Whole-cell Microbial Pretreatment 51 2.2.3.3 Fungal Pretreatment 52 2.2.3.4 Ensiling 52 2.2.3.5 Summary of Individual Pretreatment Efficiencies 53 2.2.4 Physiochemical Pretreatment of Lignocellulosic Biomass in the Production of Biogas 54 2.2.4.1 Hybrid State of Art Lignocellulosic Pretreatments 54 2.3 Pertinent Perspectives 58 2.3.1 Integrated Biorefinery While Treating Various Wastes 58 2.3.1.1 Municipal Solid Waste (MSW) 58 2.3.1.2 Forestry Waste 59 2.3.1.3 Crop Straw 59 2.3.2 Biogas Production from Lignocellulosic Waste and Its Economic Viability 59 2.4 Conclusions 60 Acknowledgments 61 References 61 3 Biogas Technology and the Application for Agricultural and Food Waste Treatment 73Wei Qiao, Simon M. Wandera, Mengmeng Jiang, Yapeng Song, and Renjie Dong 3.1 Development of Biogas Plants 73 3.1.1 Agricultural Waste 74 3.1.1.1 Livestock and Poultry Manure 74 3.1.1.2 Crop Straw 74 3.1.2 Municipal Solid Waste 75 3.1.2.1 Municipal Solid Waste 75 3.1.2.2 Sewage Sludge 75 3.2 Anaerobic Digestion Process 76 3.3 Biogas Production from Livestock and Poultry Manure 77 3.3.1 Successful AD of Cattle and Swine Manure 77 3.3.1.1 Industrial-scale AD of Cattle Manure 77 3.3.1.2 Industrial-scale AD of Swine Manure 77 3.3.2 Successful Anaerobic Digestion of Chicken Manure in a Large Plant 77 3.3.3 Strategies for Mitigating Ammonia Inhibition in Chicken Manure AD 78 3.3.3.1 Supplementation with Trace Elements 78 3.3.3.2 In-situ Ammonia Stripping for Chicken Manure Digesters 79 3.4 Food Waste Anaerobic Digestion 79 3.4.1 Challenges of Food Waste AD and the Solutions 79 3.4.1.1 VFAs Accumulation in Thermophilic AD of Food Waste 79 3.4.1.2 AD Technologies for Food Waste 80 3.4.1.3 Anaerobic Membrane Bioreactor Technology for Food Waste 81 References 81 4 Biogas Production from High-solid Anaerobic Digestion of Food Waste and Its Co-digestion with Other Organic Wastes 85Le Zhang, To-Hung Tsui, Kai-Chee Loh, Yanjun Dai, Jingxin Zhang, and Yen Wah Tong 4.1 Introduction 85 4.2 Reactor Systems for HSAD 86 4.2.1 High-solid Anaerobic Membrane Bioreactor 86 4.2.2 Two-stage HSAD Reactor System 87 4.2.3 High-solid Plug-flow Bioreactor 88 4.3 Intensification Strategies for HSAD 89 4.3.1 High-solid Anaerobic Co-digestion (HS-AcD) 89 4.3.2 Supplementation of Additives 90 4.3.3 Bioaugmentation Strategies for HSAD 91 4.3.4 Optimization of Process Parameters 91 4.4 Microbial Communities for HSAD 93 4.5 Digestate Management for HSAD 94 4.6 Conclusions and Perspectives 94 Acknowledgments 95 References 95 5 Biomethane - Production and Management 101Wojciech Czekäa, Aleksandra ¿ukomska, and Martyna Kuli¿ska 5.1 Introduction 101 5.2 Purification and Usage of Biogas 103 5.2.1 Biological Desulfurization Within the Digester 104 5.2.2 Desulfurization by Adsorption on Iron Hydroxide 104 5.2.3 Desulfurization by Adsorption on Activated Carbon 104 5.3 Opportunities for Biogas Upgrading 105 5.3.1 CO2 Separation Through Membranes 105 5.3.2 CO2 Separation by Water Scrubbing 106 5.3.3 Chemical Separation of CO2/Chemical Scrubbing 108 5.3.4 Pressure Separation of CO2 (Pressure Swing Adsorption) 109 5.3.5 Cryogenic CO2 Separation 109 5.4 Possibilities of Using Biomethane 110 5.4.1 Production of bioCNG and bioLNG Fuels 111 5.4.2 Production of Biohydrogen 111 5.5 Profitability of Biomethane Production and Recommended Support Systems 112 5.6 Conclusion 113 References 114 6 The Biogas Use 117Muhammad U. Khan, Abid Sarwar, Nalok Dutta, and Muhammad Arslan 6.1 Introduction 117 6.2 Biogas Utilization Technologies 118 6.3 Use of Biogas as Trigeneration 119 6.4 Biogas as a Transportation Fuels 120 6.5 Use of Biogas in Reciprocating Engine 121 6.6 Spark Ignition Gas Engine 123 6.7 Use of Biogas in Generator 124 6.8 Use of Biogas in Gas Turbines 125 6.9 Usage of Biogas in Fuel Cell 125 6.10 Hydrogen Production from Biogas 125 6.11 Biogas Cleaning for its Utilization 125 6.11.1 Carbon Dioxide 125 6.11.2 Water 126 6.11.3 Hydrogen Sulfide 126 6.11.4 Oxygen and Nitrogen 126 6.11.5 Ammonia 127 6.11.6 Volatile Organic Compounds 127 6.11.7 Particles 127 6.11.8 Foams and Solid Particles 127 6.12 Different Approaches for H2S Removal 128 6.12.1 Iron Sponge 128 6.12.2 Proprietary Scrubber Systems 129 6.12.3 Ferric Chloride Injection 129 6.12.4 Biological Method 130 6.13 Different Approaches for Moisture Reduction 130 6.13.1 Compression or Condensation 130 6.13.2 Adsorption 130 6.13.3 Absorption 130 6.14 Siloxane Removal 131 6.14.1 Gas Drying 131 6.15 CO2 Separation 132 6.15.1 Cryogenic Technique 132 6.15.2 Water Scrubber 133 6.15.3 Adsorption 133 6.15.4 Membrane Separation 134 6.16 Conclusion 135 References 136 7 Digestate from Agricultural Biogas Plant - Properties and Management 141Wojciech Czekäa 7.1 Introduction 141 7.2 Digestate from Agricultural Biogas Plant - Production, Properties, and Processing 142 7.2.1 Production 142 7.2.2 Properties 142 7.2.3 Processing 144 7.3 Digestate from Agricultural Biogas Plant - Management 145 7.3.1 Raw Digestate Fertilization 145 7.3.2 Liquid Fraction Management 146 7.3.3 Solid Fraction Management 147 7.3.4 Energy Management of the Solid Fraction 149 7.4 Conclusion 150 References 150 8 Environmental Aspects of Biogas Production 155Yelizaveta Chernysh, Viktoriia Chubur, and Hynek Roubík 8.1 Introduction 155 8.2 Impact of Farms and Livestock Complexes on the Environment 157 8.3 The Environmental Benefits of Biogas Production 158 8.4 Environmental Safety of the Integrated Model of Bioprocesses of Hydrogen Production and Methane Generation in the Stages of Anaerobic Fermentation of Waste 162 8.5 Life Cycle Assessment for Biogas Production 165 8.6 Environmental Issue of Biogas Market in Ukraine - Case Study 167 8.7 Conclusion 172 References 172 9 Hybrid Environmental and Economic Assessment of Biogas Plants in Integrated Organic Waste Management Strategies 179Amal Elfeky, Kazi Fattah, and Mohamed Abdallah 9.1 Introduction 179 9.2 Methodology 180 9.2.1 Overview 180 9.2.2 Waste Management Scenarios 181 9.2.3 Life Cycle Assessment 182 9.2.3.1 Goal and Scope Definition 182 9.2.3.2 Inventory Analysis 183 9.2.3.3 Impact Assessment 183 9.2.3.4 Interpretation 184 9.2.4 Life Cycle Costing 184 9.2.5 Eco-Efficiency Analysis 185 9.2.6 Case Study: The UAE 185 9.3 Results and Discussion 185 9.3.1 Material and Energy Recovery 186 9.3.2 Life Cycle Assessment 188 9.3.2.1 Overall Impact Assessment 188 9.3.3 Life Cycle Costing 190 9.3.3.1 Cost and Revenue Streams 190 9.3.3.2 Net Present Value 191 9.3.4 Eco-Efficiency Analysis 192 9.4 Conclusion 193 References 193 10 Reduction of the Carbon Footprint in Terms of Agricultural Biogas Plants 195Agnieszka Wawrzyniak Acronyms 195 10.1 Introduction 196 10.1.1 Manure Management and Biomethane Potential in Poland and EU Countries 196 10.1.2 Substrates Used for Biogas Plants in Poland 196 10.1.3 GHG Emissions from Agriculture and Biogas Plants as Tool for its Reduction 198 10.2 Methodology of CF 201 10.2.1 GHG Fluxes from Agriculture and Tools for its Calculations 202 10.2.2 System Boundaries for Biogas Plant and Data Collection 203 10.3 Life Cycle CO2 Footprints of Various Biogas Projects - Comparison with Literature Results 204 10.4 Conclusions 207 References 207 11 Financial Sustainability and Stakeholder Partnerships of Biogas Plants 211To-Hung Tsui, Le Zhang, Jonathan T. E. Lee, Yanjun Dai, and Yen Wah Tong 11.1 Introduction 211 11.2 Basic Technological Factors 212 11.3 Economic Evaluation and Failures 214 11.3.1 Investment Risks for Fixed Assets 214 11.3.2 Failures and Intervention 215 11.4 Stakeholders Partnership and Co-governance 216 11.4.1 Government 216 11.4.2 Consultant and Constructor 216 11.4.3 Source of Waste Streams 217 11.4.4 Customers for Energy and Resource 217 11.5 Summary and Outlooks 217 Acknowledgments 218 References 218 12 Measuring the Resilience of...
Details
Erscheinungsjahr: 2023
Fachbereich: Allgemeines
Genre: Chemie, Importe
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 352 S.
ISBN-13: 9781119863786
ISBN-10: 1119863783
Sprache: Englisch
Einband: Gebunden
Redaktion: Czekala, Wojciech
Stevens, Christian V
Herausgeber: Wojciech Czekala/Christian V Stevens
Hersteller: Wiley
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, amartine@wiley-vch.de
Maße: 247 x 173 x 27 mm
Von/Mit: Wojciech Czekala (u. a.)
Erscheinungsdatum: 11.12.2023
Gewicht: 0,838 kg
Artikel-ID: 124654901
Über den Autor

Editor
Wojciech Czekäa, Associate Professor, Vice Dean of Science - Faculty of Environmental and Mechanical Engineering, Department of Biosystems Engineering, Poznä University of Life Sciences (PULS), Poland.

Series Editor
Christian Stevens, Faculty of Bioscience Engineering, Ghent University, Belgium.

Inhaltsverzeichnis
List of Contributors xvii Series Preface xxi 1 Anaerobic Digestion Process and Biogas Production 1Liangliang Wei, Weixin Zhao, Likui Feng, Jianju Li, Xinhui Xia, Hang Yu, and Yu Liu 1.1 Introduction 1 1.2 Basic Knowledges of AD Processes and Operations 2 1.2.1 Fundamental Mechanisms and Typical Processes of AD 2 1.2.2 Factors Affecting the AD Process of Biogas Production 4 1.2.2.1 Temperature 4 1.2.2.2 pH 5 1.2.2.3 Organic Loading Rate (OLR) 5 1.2.2.4 Carbon-Nitrogen Ratio 5 1.2.2.5 Inoculum-to-Substrate Ratio (ISR) 6 1.2.2.6 Solids Concentration 6 1.2.2.7 Hydraulic Retention Time (HRT) 6 1.3 Current Challenges of AD Process and Biogas Production 7 1.3.1 Ammonia Inhibition 7 1.3.2 Volatile Fatty Acid Inhibition 10 1.3.3 Psychrophilic Temperature Inhibition 12 1.4 Proposed Strategies for Enhanced Biogas Production 14 1.4.1 Promoting Direct Interspecies Electron Transfer via Conductive Materials Additive 14 1.4.2 Co-digestion of Different Substrates 16 1.4.3 Bioaugmentation 19 1.4.4 Bioelectrochemical System-Assisted AD 20 1.5 Techno-Economic and Environmental Assessment of Anaerobic Digestion for Biogas Production 22 1.5.1 Techno-Economic Analysis 22 1.5.2 Environmental Feasibility and Benefit Assessment 24 References 26 2 Pretreatment of Lignocellulosic Materials to Enhance Biogas Recovery 37Jonathan T. E. Lee, Nalok Dutta, To-Hung Tsui, Ee Y. Lim, Yanjun Dai, and Yen W. Tong 2.1 Introduction 37 2.1.1 Lignocellulosic Waste Material Production 38 2.1.2 Structural Insight of Lignocellulosic Materials 39 2.1.3 Biogas Production from Lignocellulosic Materials and the Need for Pretreatment 40 2.2 Available Pretreatment Technologies for Lignocellulosic Materials and the Corresponding Biogas Recovery Associated 41 2.2.1 Physical Pretreatment 41 2.2.1.1 Comminution 43 2.2.1.2 Microwave Thermal Pretreatment 43 2.2.1.3 Extrusion 44 2.2.1.4 Ultrasonication 45 2.2.2 Chemical Pretreatment 45 2.2.2.1 Acid Hydrolysis Pretreatment 45 2.2.2.2 Alkali Hydrolysis Pretreatment 47 2.2.2.3 Ionic Liquids Pretreatment 48 2.2.2.4 Deep Eutectic Solvents Pretreatment 48 2.2.2.5 Organosolvents Pretreatment 49 2.2.3 Biological Pretreatment 49 2.2.3.1 Enzymatic Pretreatment 50 2.2.3.2 Whole-cell Microbial Pretreatment 51 2.2.3.3 Fungal Pretreatment 52 2.2.3.4 Ensiling 52 2.2.3.5 Summary of Individual Pretreatment Efficiencies 53 2.2.4 Physiochemical Pretreatment of Lignocellulosic Biomass in the Production of Biogas 54 2.2.4.1 Hybrid State of Art Lignocellulosic Pretreatments 54 2.3 Pertinent Perspectives 58 2.3.1 Integrated Biorefinery While Treating Various Wastes 58 2.3.1.1 Municipal Solid Waste (MSW) 58 2.3.1.2 Forestry Waste 59 2.3.1.3 Crop Straw 59 2.3.2 Biogas Production from Lignocellulosic Waste and Its Economic Viability 59 2.4 Conclusions 60 Acknowledgments 61 References 61 3 Biogas Technology and the Application for Agricultural and Food Waste Treatment 73Wei Qiao, Simon M. Wandera, Mengmeng Jiang, Yapeng Song, and Renjie Dong 3.1 Development of Biogas Plants 73 3.1.1 Agricultural Waste 74 3.1.1.1 Livestock and Poultry Manure 74 3.1.1.2 Crop Straw 74 3.1.2 Municipal Solid Waste 75 3.1.2.1 Municipal Solid Waste 75 3.1.2.2 Sewage Sludge 75 3.2 Anaerobic Digestion Process 76 3.3 Biogas Production from Livestock and Poultry Manure 77 3.3.1 Successful AD of Cattle and Swine Manure 77 3.3.1.1 Industrial-scale AD of Cattle Manure 77 3.3.1.2 Industrial-scale AD of Swine Manure 77 3.3.2 Successful Anaerobic Digestion of Chicken Manure in a Large Plant 77 3.3.3 Strategies for Mitigating Ammonia Inhibition in Chicken Manure AD 78 3.3.3.1 Supplementation with Trace Elements 78 3.3.3.2 In-situ Ammonia Stripping for Chicken Manure Digesters 79 3.4 Food Waste Anaerobic Digestion 79 3.4.1 Challenges of Food Waste AD and the Solutions 79 3.4.1.1 VFAs Accumulation in Thermophilic AD of Food Waste 79 3.4.1.2 AD Technologies for Food Waste 80 3.4.1.3 Anaerobic Membrane Bioreactor Technology for Food Waste 81 References 81 4 Biogas Production from High-solid Anaerobic Digestion of Food Waste and Its Co-digestion with Other Organic Wastes 85Le Zhang, To-Hung Tsui, Kai-Chee Loh, Yanjun Dai, Jingxin Zhang, and Yen Wah Tong 4.1 Introduction 85 4.2 Reactor Systems for HSAD 86 4.2.1 High-solid Anaerobic Membrane Bioreactor 86 4.2.2 Two-stage HSAD Reactor System 87 4.2.3 High-solid Plug-flow Bioreactor 88 4.3 Intensification Strategies for HSAD 89 4.3.1 High-solid Anaerobic Co-digestion (HS-AcD) 89 4.3.2 Supplementation of Additives 90 4.3.3 Bioaugmentation Strategies for HSAD 91 4.3.4 Optimization of Process Parameters 91 4.4 Microbial Communities for HSAD 93 4.5 Digestate Management for HSAD 94 4.6 Conclusions and Perspectives 94 Acknowledgments 95 References 95 5 Biomethane - Production and Management 101Wojciech Czekäa, Aleksandra ¿ukomska, and Martyna Kuli¿ska 5.1 Introduction 101 5.2 Purification and Usage of Biogas 103 5.2.1 Biological Desulfurization Within the Digester 104 5.2.2 Desulfurization by Adsorption on Iron Hydroxide 104 5.2.3 Desulfurization by Adsorption on Activated Carbon 104 5.3 Opportunities for Biogas Upgrading 105 5.3.1 CO2 Separation Through Membranes 105 5.3.2 CO2 Separation by Water Scrubbing 106 5.3.3 Chemical Separation of CO2/Chemical Scrubbing 108 5.3.4 Pressure Separation of CO2 (Pressure Swing Adsorption) 109 5.3.5 Cryogenic CO2 Separation 109 5.4 Possibilities of Using Biomethane 110 5.4.1 Production of bioCNG and bioLNG Fuels 111 5.4.2 Production of Biohydrogen 111 5.5 Profitability of Biomethane Production and Recommended Support Systems 112 5.6 Conclusion 113 References 114 6 The Biogas Use 117Muhammad U. Khan, Abid Sarwar, Nalok Dutta, and Muhammad Arslan 6.1 Introduction 117 6.2 Biogas Utilization Technologies 118 6.3 Use of Biogas as Trigeneration 119 6.4 Biogas as a Transportation Fuels 120 6.5 Use of Biogas in Reciprocating Engine 121 6.6 Spark Ignition Gas Engine 123 6.7 Use of Biogas in Generator 124 6.8 Use of Biogas in Gas Turbines 125 6.9 Usage of Biogas in Fuel Cell 125 6.10 Hydrogen Production from Biogas 125 6.11 Biogas Cleaning for its Utilization 125 6.11.1 Carbon Dioxide 125 6.11.2 Water 126 6.11.3 Hydrogen Sulfide 126 6.11.4 Oxygen and Nitrogen 126 6.11.5 Ammonia 127 6.11.6 Volatile Organic Compounds 127 6.11.7 Particles 127 6.11.8 Foams and Solid Particles 127 6.12 Different Approaches for H2S Removal 128 6.12.1 Iron Sponge 128 6.12.2 Proprietary Scrubber Systems 129 6.12.3 Ferric Chloride Injection 129 6.12.4 Biological Method 130 6.13 Different Approaches for Moisture Reduction 130 6.13.1 Compression or Condensation 130 6.13.2 Adsorption 130 6.13.3 Absorption 130 6.14 Siloxane Removal 131 6.14.1 Gas Drying 131 6.15 CO2 Separation 132 6.15.1 Cryogenic Technique 132 6.15.2 Water Scrubber 133 6.15.3 Adsorption 133 6.15.4 Membrane Separation 134 6.16 Conclusion 135 References 136 7 Digestate from Agricultural Biogas Plant - Properties and Management 141Wojciech Czekäa 7.1 Introduction 141 7.2 Digestate from Agricultural Biogas Plant - Production, Properties, and Processing 142 7.2.1 Production 142 7.2.2 Properties 142 7.2.3 Processing 144 7.3 Digestate from Agricultural Biogas Plant - Management 145 7.3.1 Raw Digestate Fertilization 145 7.3.2 Liquid Fraction Management 146 7.3.3 Solid Fraction Management 147 7.3.4 Energy Management of the Solid Fraction 149 7.4 Conclusion 150 References 150 8 Environmental Aspects of Biogas Production 155Yelizaveta Chernysh, Viktoriia Chubur, and Hynek Roubík 8.1 Introduction 155 8.2 Impact of Farms and Livestock Complexes on the Environment 157 8.3 The Environmental Benefits of Biogas Production 158 8.4 Environmental Safety of the Integrated Model of Bioprocesses of Hydrogen Production and Methane Generation in the Stages of Anaerobic Fermentation of Waste 162 8.5 Life Cycle Assessment for Biogas Production 165 8.6 Environmental Issue of Biogas Market in Ukraine - Case Study 167 8.7 Conclusion 172 References 172 9 Hybrid Environmental and Economic Assessment of Biogas Plants in Integrated Organic Waste Management Strategies 179Amal Elfeky, Kazi Fattah, and Mohamed Abdallah 9.1 Introduction 179 9.2 Methodology 180 9.2.1 Overview 180 9.2.2 Waste Management Scenarios 181 9.2.3 Life Cycle Assessment 182 9.2.3.1 Goal and Scope Definition 182 9.2.3.2 Inventory Analysis 183 9.2.3.3 Impact Assessment 183 9.2.3.4 Interpretation 184 9.2.4 Life Cycle Costing 184 9.2.5 Eco-Efficiency Analysis 185 9.2.6 Case Study: The UAE 185 9.3 Results and Discussion 185 9.3.1 Material and Energy Recovery 186 9.3.2 Life Cycle Assessment 188 9.3.2.1 Overall Impact Assessment 188 9.3.3 Life Cycle Costing 190 9.3.3.1 Cost and Revenue Streams 190 9.3.3.2 Net Present Value 191 9.3.4 Eco-Efficiency Analysis 192 9.4 Conclusion 193 References 193 10 Reduction of the Carbon Footprint in Terms of Agricultural Biogas Plants 195Agnieszka Wawrzyniak Acronyms 195 10.1 Introduction 196 10.1.1 Manure Management and Biomethane Potential in Poland and EU Countries 196 10.1.2 Substrates Used for Biogas Plants in Poland 196 10.1.3 GHG Emissions from Agriculture and Biogas Plants as Tool for its Reduction 198 10.2 Methodology of CF 201 10.2.1 GHG Fluxes from Agriculture and Tools for its Calculations 202 10.2.2 System Boundaries for Biogas Plant and Data Collection 203 10.3 Life Cycle CO2 Footprints of Various Biogas Projects - Comparison with Literature Results 204 10.4 Conclusions 207 References 207 11 Financial Sustainability and Stakeholder Partnerships of Biogas Plants 211To-Hung Tsui, Le Zhang, Jonathan T. E. Lee, Yanjun Dai, and Yen Wah Tong 11.1 Introduction 211 11.2 Basic Technological Factors 212 11.3 Economic Evaluation and Failures 214 11.3.1 Investment Risks for Fixed Assets 214 11.3.2 Failures and Intervention 215 11.4 Stakeholders Partnership and Co-governance 216 11.4.1 Government 216 11.4.2 Consultant and Constructor 216 11.4.3 Source of Waste Streams 217 11.4.4 Customers for Energy and Resource 217 11.5 Summary and Outlooks 217 Acknowledgments 218 References 218 12 Measuring the Resilience of...
Details
Erscheinungsjahr: 2023
Fachbereich: Allgemeines
Genre: Chemie, Importe
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 352 S.
ISBN-13: 9781119863786
ISBN-10: 1119863783
Sprache: Englisch
Einband: Gebunden
Redaktion: Czekala, Wojciech
Stevens, Christian V
Herausgeber: Wojciech Czekala/Christian V Stevens
Hersteller: Wiley
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, amartine@wiley-vch.de
Maße: 247 x 173 x 27 mm
Von/Mit: Wojciech Czekala (u. a.)
Erscheinungsdatum: 11.12.2023
Gewicht: 0,838 kg
Artikel-ID: 124654901
Sicherheitshinweis