Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
73,70 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Utilize R to uncover hidden patterns in your Big Data
Key Features
Perform computational analyses on Big Data to generate meaningful results
Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases,
Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market
Book Description
Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing.
The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O.
What you will learn
Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities
Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner
Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage
Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform
Who this book is for
This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows.
It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R.
Key Features
Perform computational analyses on Big Data to generate meaningful results
Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases,
Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market
Book Description
Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing.
The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O.
What you will learn
Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities
Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner
Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage
Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform
Who this book is for
This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows.
It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R.
Utilize R to uncover hidden patterns in your Big Data
Key Features
Perform computational analyses on Big Data to generate meaningful results
Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases,
Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market
Book Description
Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing.
The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O.
What you will learn
Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities
Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner
Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage
Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform
Who this book is for
This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows.
It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R.
Key Features
Perform computational analyses on Big Data to generate meaningful results
Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases,
Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market
Book Description
Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing.
The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O.
What you will learn
Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities
Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner
Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage
Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform
Who this book is for
This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows.
It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R.
Über den Autor
In Discussion regarding updating his book.
Simon Walkowiak is a former data scientist at the UK Data
Archive (University of Essex) and currently is the Managing Director of Mind
Project Ltd and a Data Scientist Meetup organizer based in London.
Simon Walkowiak is a former data scientist at the UK Data
Archive (University of Essex) and currently is the Managing Director of Mind
Project Ltd and a Data Scientist Meetup organizer based in London.
Details
Erscheinungsjahr: | 2016 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781786466457 |
ISBN-10: | 1786466457 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Walkowiak, Simon |
Hersteller: | Packt Publishing |
Verantwortliche Person für die EU: | Books on Demand GmbH, In de Tarpen 42, D-22848 Norderstedt, info@bod.de |
Maße: | 235 x 191 x 28 mm |
Von/Mit: | Simon Walkowiak |
Erscheinungsdatum: | 29.07.2016 |
Gewicht: | 0,935 kg |
Über den Autor
In Discussion regarding updating his book.
Simon Walkowiak is a former data scientist at the UK Data
Archive (University of Essex) and currently is the Managing Director of Mind
Project Ltd and a Data Scientist Meetup organizer based in London.
Simon Walkowiak is a former data scientist at the UK Data
Archive (University of Essex) and currently is the Managing Director of Mind
Project Ltd and a Data Scientist Meetup organizer based in London.
Details
Erscheinungsjahr: | 2016 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781786466457 |
ISBN-10: | 1786466457 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Walkowiak, Simon |
Hersteller: | Packt Publishing |
Verantwortliche Person für die EU: | Books on Demand GmbH, In de Tarpen 42, D-22848 Norderstedt, info@bod.de |
Maße: | 235 x 191 x 28 mm |
Von/Mit: | Simon Walkowiak |
Erscheinungsdatum: | 29.07.2016 |
Gewicht: | 0,935 kg |
Sicherheitshinweis