69,45 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
CHAPTER 1 INTEGRATED-CIRCUIT DEVICES AND MODELLING 1
1.1 Semiconductors and pn Junctions 1
1.1.1 Diodes 2
1.1.2 Reverse-Biased Diodes 4
1.1.3 Graded Junctions 8
1.1.4 Large-Signal Junction Capacitance 10
1.1.5 Forward-Biased Junctions 11
1.1.6 Junction Capacitance of Forward-Biased Diode 12
1.1.7 Small-Signal Model of a Forward-Biased Diode 13
1.1.8 Schottky Diodes 14
1.2 MOS Transistors 15
1.2.1 Symbols for MOS Transistors 16
1.2.2 Basic Operation 17
1.2.3 Large-Signal Modelling 22
1.2.4 Body Effect 25
1.2.5 p-Channel Transistors 26
1.2.6 Low-Frequency Small-Signal Modelling in the Active Region 26
1.2.7 High-Frequency Small-Signal Modelling in the Active Region 32
1.2.8 Small-Signal Modelling in the Triode and Cutoff Regions 35
1.2.9 Analog Figures of Merit and Trade-offs 37
1.3 Device Model Summary 39
1.3.1 Constants 40
1.3.2 Diode Equations 40
1.3.3 MOS Transistor Equations 41
1.4 Advanced MOS Modelling 43
1.4.1 Subthreshold Operation 43
1.4.2 Mobility Degradation 46
1.4.3 Summary of Subthreshold and Mobility Degradation Equations 48
1.4.4 Parasitic Resistances 48
1.4.5 Short-Channel Effects 49
1.4.6 Leakage Currents 50
1.5 SPICE Modelling Parameters 51
1.5.1 Diode Model 51
1.5.2 MOS Transistors 52
1.5.3 Advanced SPICE Models of MOS Transistors 52
1.6 Passive Devices 55
1.6.1 Resistors 55
1.6.2 Capacitors 59
1.7 Appendix 61
1.7.1 Diode Exponential Relationship 61
1.7.2 Diode-Diffusion Capacitance 63
1.7.3 MOS Threshold Voltage and the Body Effect 65
1.7.4 MOS Triode Relationship 67
1.8 Key Points 69
1.9 References 70
1.10 Problems 70
CHAPTER 2 PROCESSING AND LAYOUT 73
2.1 CMOS Processing 73
2.1.1 The Silicon Wafer 73
2.1.2 Photolithography and Well Definition 74
2.1.3 Diffusion and Ion Implantation 76
2.1.4 Chemical Vapor Deposition and Defining the Active Regions 78
2.1.5 Transistor Isolation 78
2.1.6 Gate-Oxide and Threshold-Voltage Adjustments 81
2.1.7 Polysilicon Gate Formation 82
2.1.8 Implanting the Junctions, Depositing SiO2, and Opening Contact Holes 82
2.1.9 Annealing, Depositing and Patterning Metal, and Overglass Deposition 84
2.1.10 Additional Processing Steps 84
2.2 CMOS Layout and Design Rules 86
2.2.1 Spacing Rules 86
2.2.2 Planarity and Fill Requirements 94
2.2.3 Antenna Rules 94
2.2.4 Latch-Up 95
2.3 Variability and Mismatch 96
2.3.1 Systematic Variations Including Proximity Effects 96
2.3.2 Process Variations 98
2.3.3 Random Variations and Mismatch 99
2.4 Analog Layout Considerations 103
2.4.1 Transistor Layouts 103
2.4.2 Capacitor Matching 104
2.4.3 Resistor Layout 107
2.4.4 Noise Considerations 109
2.5 Key Points 112
2.6 References 113
2.7 Problems 114
CHAPTER 3 BASIC CURRENT MIRRORS AND SINGLE-STAGE AMPLIFIERS 117
3.1 Simple CMOS Current Mirror 118
3.2 Common-Source Amplifier 120
3.3 Source-Follower or Common-Drain Amplifier 122
3.4 Common-Gate Amplifier 124
3.5 Source-Degenerated Current Mirrors 127
3.6 Cascode Current Mirrors 129
3.7 Cascode Gain Stage 131
3.8 MOS Differential Pair and Gain Stage 135
3.9 Key Points 138
3.10 References 139
3.11 Problems 139
CHAPTER 4 FREQUENCY RESPONSE OF ELECTRONIC CIRCUITS 144
4.1 Frequency Response of Linear Systems 144
4.1.1 Magnitude and Phase Response 145
4.1.2 First-Order Circuits 147
4.1.3 Second-Order Low-Pass Transfer Functions with Real Poles 154
4.1.4 Bode Plots 157
4.1.5 Second-Order Low-Pass Transfer Functions with Complex Poles 163
4.2 Frequency Response of Elementary Transistor Circuits 164
4.2.1 High-Frequency MOS Small-Signal Model 164
4.2.2 Common-Source Amplifier 166
4.2.3 Miller Theorem and Miller Effect 169
4.2.4 Zero-Value Time-Constant Analysis 173
4.2.5 Common-Source Design Examples 176
4.2.6 Common-Gate Amplifier 179
4.3 Cascode Gain Stage 181
4.4 Source-Follower Amplifier 187
4.5 Differential Pair 193
4.5.1 High-Frequency T Model 193
4.5.2 Symmetric Differential Amplifier 194
4.5.3 Single-Ended Differential Amplifier 195
4.5.4 Differential Pair with Active Load 196
4.6 Key Points 197
4.7 References 198
4.8 Problems 198
CHAPTER 5 FEEDBACK AMPLIFIERS 204
5.1 Ideal Model of Negative Feedback 204
5.1.1 Basic Definitions 204
5.1.2 Gain Sensitivity 205
5.1.3 Bandwidth 206
5.1.4 Linearity 207
5.1.5 Summary 207
5.2 Dynamic Response of Feedback Amplifiers 208
5.2.1 Stability Criteria 209
5.2.2 Phase Margin 211
5.3 First- and Second-Order Feedback Systems 213
5.3.1 First-Order Feedback Systems 213
5.3.2 Second-Order Feedback Systems 217
5.3.3 Higher-Order Feedback Systems 220
5.4 Common Feedback Amplifiers 221
5.4.1 Obtaining the Loop Gain, L(s) 222
5.4.2 Noninverting Amplifier 226
5.4.3 Transimpedance (Inverting) Amplifiers 231
5.5 Summary of Key Points 235
5.6 References 236
5.7 Problems 236
CHAPTER 6 BASIC OPAMP DESIGN AND COMPENSATION 242
6.1 Two-Stage CMOS Opamp 242
6.1.1 Opamp Gain 243
6.1.2 Frequency Response 245
6.1.3 Slew Rate 249
6.1.4 n-Channel or p-Channel Input Stage 252
6.1.5 Systematic Offset Voltage 253
6.2 Opamp Compensation 254
6.2.1 Dominant-Pole Compensation and Lead Compensation 255
6.2.2 Compensating the Two-Stage Opamp 256
6.2.3 Making Compensation Independent of Process and Temperature 260
6.3 Advanced Current Mirrors 262
6.3.1 Wide-Swing Current Mirrors 262
6.3.2 Enhanced Output-Impedance Current Mirrors and Gain Boosting 263
6.3.3 Wide-Swing Current Mirror with Enhanced Output Impedance 266
6.3.4 Current-Mirror Symbol 267
6.4 Folded-Cascode Opamp 268
6.4.1 Small-Signal Analysis 270
6.4.2 Slew Rate 272
6.5 Current Mirror Opamp 275
6.6 Linear Settling Time Revisited 279
6.7 Fully Differential Opamps 281
6.7.1 Fully Differential Folded-Cascode Opamp 283
6.7.2 Alternative Fully Differential Opamps 284
6.7.3 Low Supply Voltage Opamps 286
6.8 Common-Mode Feedback Circuits 288
6.9 Summary of Key Points 292
6.10 References 293
6.11 Problems 294
CHAPTER 7 BIASING, REFERENCES, AND REGULATORS 302
7.1 Analog Integrated Circuit Biasing 302
7.1.1 Bias Circuits 303
7.1.2 Reference Circuits 305
7.1.3 Regulator Circuits 306
7.2 Establishing Constant Transconductance 307
7.2.1 Basic Constant-Transconductance Circuit 307
7.2.2 Improved Constant-Transconductance Circuits 309
7.3 Establishing Constant Voltages and Currents 310
7.3.1 Bandgap Voltage Reference Basics 310
7.3.2 Circuits for Bandgap References 314
7.3.3 Low-Voltage Bandgap Reference 319
7.3.4 Current Reference 320
7.4 Voltage Regulation 321
7.4.1 Regulator Specifications 321
7.4.2 Feedback Analysis 322
7.4.3 Low Dropout Regulators 324
7.5 Summary of Key Points 327
7.6 References 327
7.7 Problems 328
CHAPTER 8 BIPOLAR DEVICES AND CIRCUITS 331
8.1 Bipolar-Junction Transistors 331
8.1.1 Basic Operation 331
8.1.2 Analog Figures of Merit 341
8.2 Bipolar Device Model Summary 344
8.3 SPICE Modeling 345
8.4 Bipolar and BICMOS Processing 346
8.4.1 Bipolar Processing 346
8.4.2 Modern SiGe BiCMOS HBT Processing 347
8.4.3 Mismatch in Bipolar Devices 348
8.5 Bipolar Current Mirrors and Gain Stages 349
8.5.1 Current Mirrors 349
8.5.2 Emitter Follower 350
8.5.3 Bipolar Differential Pair 353
8.6 Appendix 356
8.6.1 Bipolar Transistor Exponential Relationship 356
8.6.2 Base Charge Storage of an Active BJT 359
8.7 Summary of Key Points 359
8.8 References 360
8.9 Problems 360
CHAPTER 9 NOISE AND LINEARITY ANALYSIS AND MODELLING 363
9.1 Time-Domain Analysis 363
9.1.1 Root Mean Square (rms) Value 364
9.1.2 SNR 365
9.1.3 Units of dBm 365
9.1.4 Noise Summation 366
9.2 Frequency-Domain Analysis 367
9.2.1 Noise Spectral Density 367
9.2.2 White Noise 369
9.2.3 1/f, or Flicker, Noise 370
9.2.4 Filtered Noise 371
9.2.5 Noise Bandwidth 373
9.2.6 Piecewise Integration of Noise 375
9.2.7 1/f Noise Tangent Principle 377
9.3 Noise Models for Circuit Elements 377
9.3.1 Resistors 378
9.3.2 Diodes 378
9.3.3 Bipolar Transistors 380
9.3.4 MOSFETS 380
9.3.5 Opamps 382
9.3.6 Capacitors and Inductors 382
9.3.7 Sampled Signal Noise 384
9.3.8 Input-Referred Noise 384
9.4 Noise Analysis Examples 387
9.4.1 Opamp Example 387
9.4.2 Bipolar Common-Emitter Example 390
9.4.3 CMOS Differential Pair Example 392
9.4.4 Fiber-Optic Transimpedance Amplifier Example 395
9.5 Dynamic Range Performance 397
9.5.1 Total Harmonic Distortion (THD) 398
9.5.2 Third-Order Intercept Point (IP3) 400
9.5.3 Spurious-Free Dynamic Range (SFDR) 402
9.5.4 Signal-to-Noise and Distortion Ratio (SNDR) 404
9.6 Key Points 405
9.7 References 406
9.8 Problems...
Erscheinungsjahr: | 2012 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Importe, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | 832 S. |
ISBN-13: | 9781118092330 |
ISBN-10: | 1118092333 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Johns, David
Martin, Kenneth Carusone, Tony Chan |
Hersteller: |
John Wiley & Sons
John Wiley & Sons Inc |
Verantwortliche Person für die EU: | Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, amartine@wiley-vch.de |
Maße: | 233 x 187 x 43 mm |
Von/Mit: | David Johns (u. a.) |
Erscheinungsdatum: | 11.05.2012 |
Gewicht: | 1,647 kg |
CHAPTER 1 INTEGRATED-CIRCUIT DEVICES AND MODELLING 1
1.1 Semiconductors and pn Junctions 1
1.1.1 Diodes 2
1.1.2 Reverse-Biased Diodes 4
1.1.3 Graded Junctions 8
1.1.4 Large-Signal Junction Capacitance 10
1.1.5 Forward-Biased Junctions 11
1.1.6 Junction Capacitance of Forward-Biased Diode 12
1.1.7 Small-Signal Model of a Forward-Biased Diode 13
1.1.8 Schottky Diodes 14
1.2 MOS Transistors 15
1.2.1 Symbols for MOS Transistors 16
1.2.2 Basic Operation 17
1.2.3 Large-Signal Modelling 22
1.2.4 Body Effect 25
1.2.5 p-Channel Transistors 26
1.2.6 Low-Frequency Small-Signal Modelling in the Active Region 26
1.2.7 High-Frequency Small-Signal Modelling in the Active Region 32
1.2.8 Small-Signal Modelling in the Triode and Cutoff Regions 35
1.2.9 Analog Figures of Merit and Trade-offs 37
1.3 Device Model Summary 39
1.3.1 Constants 40
1.3.2 Diode Equations 40
1.3.3 MOS Transistor Equations 41
1.4 Advanced MOS Modelling 43
1.4.1 Subthreshold Operation 43
1.4.2 Mobility Degradation 46
1.4.3 Summary of Subthreshold and Mobility Degradation Equations 48
1.4.4 Parasitic Resistances 48
1.4.5 Short-Channel Effects 49
1.4.6 Leakage Currents 50
1.5 SPICE Modelling Parameters 51
1.5.1 Diode Model 51
1.5.2 MOS Transistors 52
1.5.3 Advanced SPICE Models of MOS Transistors 52
1.6 Passive Devices 55
1.6.1 Resistors 55
1.6.2 Capacitors 59
1.7 Appendix 61
1.7.1 Diode Exponential Relationship 61
1.7.2 Diode-Diffusion Capacitance 63
1.7.3 MOS Threshold Voltage and the Body Effect 65
1.7.4 MOS Triode Relationship 67
1.8 Key Points 69
1.9 References 70
1.10 Problems 70
CHAPTER 2 PROCESSING AND LAYOUT 73
2.1 CMOS Processing 73
2.1.1 The Silicon Wafer 73
2.1.2 Photolithography and Well Definition 74
2.1.3 Diffusion and Ion Implantation 76
2.1.4 Chemical Vapor Deposition and Defining the Active Regions 78
2.1.5 Transistor Isolation 78
2.1.6 Gate-Oxide and Threshold-Voltage Adjustments 81
2.1.7 Polysilicon Gate Formation 82
2.1.8 Implanting the Junctions, Depositing SiO2, and Opening Contact Holes 82
2.1.9 Annealing, Depositing and Patterning Metal, and Overglass Deposition 84
2.1.10 Additional Processing Steps 84
2.2 CMOS Layout and Design Rules 86
2.2.1 Spacing Rules 86
2.2.2 Planarity and Fill Requirements 94
2.2.3 Antenna Rules 94
2.2.4 Latch-Up 95
2.3 Variability and Mismatch 96
2.3.1 Systematic Variations Including Proximity Effects 96
2.3.2 Process Variations 98
2.3.3 Random Variations and Mismatch 99
2.4 Analog Layout Considerations 103
2.4.1 Transistor Layouts 103
2.4.2 Capacitor Matching 104
2.4.3 Resistor Layout 107
2.4.4 Noise Considerations 109
2.5 Key Points 112
2.6 References 113
2.7 Problems 114
CHAPTER 3 BASIC CURRENT MIRRORS AND SINGLE-STAGE AMPLIFIERS 117
3.1 Simple CMOS Current Mirror 118
3.2 Common-Source Amplifier 120
3.3 Source-Follower or Common-Drain Amplifier 122
3.4 Common-Gate Amplifier 124
3.5 Source-Degenerated Current Mirrors 127
3.6 Cascode Current Mirrors 129
3.7 Cascode Gain Stage 131
3.8 MOS Differential Pair and Gain Stage 135
3.9 Key Points 138
3.10 References 139
3.11 Problems 139
CHAPTER 4 FREQUENCY RESPONSE OF ELECTRONIC CIRCUITS 144
4.1 Frequency Response of Linear Systems 144
4.1.1 Magnitude and Phase Response 145
4.1.2 First-Order Circuits 147
4.1.3 Second-Order Low-Pass Transfer Functions with Real Poles 154
4.1.4 Bode Plots 157
4.1.5 Second-Order Low-Pass Transfer Functions with Complex Poles 163
4.2 Frequency Response of Elementary Transistor Circuits 164
4.2.1 High-Frequency MOS Small-Signal Model 164
4.2.2 Common-Source Amplifier 166
4.2.3 Miller Theorem and Miller Effect 169
4.2.4 Zero-Value Time-Constant Analysis 173
4.2.5 Common-Source Design Examples 176
4.2.6 Common-Gate Amplifier 179
4.3 Cascode Gain Stage 181
4.4 Source-Follower Amplifier 187
4.5 Differential Pair 193
4.5.1 High-Frequency T Model 193
4.5.2 Symmetric Differential Amplifier 194
4.5.3 Single-Ended Differential Amplifier 195
4.5.4 Differential Pair with Active Load 196
4.6 Key Points 197
4.7 References 198
4.8 Problems 198
CHAPTER 5 FEEDBACK AMPLIFIERS 204
5.1 Ideal Model of Negative Feedback 204
5.1.1 Basic Definitions 204
5.1.2 Gain Sensitivity 205
5.1.3 Bandwidth 206
5.1.4 Linearity 207
5.1.5 Summary 207
5.2 Dynamic Response of Feedback Amplifiers 208
5.2.1 Stability Criteria 209
5.2.2 Phase Margin 211
5.3 First- and Second-Order Feedback Systems 213
5.3.1 First-Order Feedback Systems 213
5.3.2 Second-Order Feedback Systems 217
5.3.3 Higher-Order Feedback Systems 220
5.4 Common Feedback Amplifiers 221
5.4.1 Obtaining the Loop Gain, L(s) 222
5.4.2 Noninverting Amplifier 226
5.4.3 Transimpedance (Inverting) Amplifiers 231
5.5 Summary of Key Points 235
5.6 References 236
5.7 Problems 236
CHAPTER 6 BASIC OPAMP DESIGN AND COMPENSATION 242
6.1 Two-Stage CMOS Opamp 242
6.1.1 Opamp Gain 243
6.1.2 Frequency Response 245
6.1.3 Slew Rate 249
6.1.4 n-Channel or p-Channel Input Stage 252
6.1.5 Systematic Offset Voltage 253
6.2 Opamp Compensation 254
6.2.1 Dominant-Pole Compensation and Lead Compensation 255
6.2.2 Compensating the Two-Stage Opamp 256
6.2.3 Making Compensation Independent of Process and Temperature 260
6.3 Advanced Current Mirrors 262
6.3.1 Wide-Swing Current Mirrors 262
6.3.2 Enhanced Output-Impedance Current Mirrors and Gain Boosting 263
6.3.3 Wide-Swing Current Mirror with Enhanced Output Impedance 266
6.3.4 Current-Mirror Symbol 267
6.4 Folded-Cascode Opamp 268
6.4.1 Small-Signal Analysis 270
6.4.2 Slew Rate 272
6.5 Current Mirror Opamp 275
6.6 Linear Settling Time Revisited 279
6.7 Fully Differential Opamps 281
6.7.1 Fully Differential Folded-Cascode Opamp 283
6.7.2 Alternative Fully Differential Opamps 284
6.7.3 Low Supply Voltage Opamps 286
6.8 Common-Mode Feedback Circuits 288
6.9 Summary of Key Points 292
6.10 References 293
6.11 Problems 294
CHAPTER 7 BIASING, REFERENCES, AND REGULATORS 302
7.1 Analog Integrated Circuit Biasing 302
7.1.1 Bias Circuits 303
7.1.2 Reference Circuits 305
7.1.3 Regulator Circuits 306
7.2 Establishing Constant Transconductance 307
7.2.1 Basic Constant-Transconductance Circuit 307
7.2.2 Improved Constant-Transconductance Circuits 309
7.3 Establishing Constant Voltages and Currents 310
7.3.1 Bandgap Voltage Reference Basics 310
7.3.2 Circuits for Bandgap References 314
7.3.3 Low-Voltage Bandgap Reference 319
7.3.4 Current Reference 320
7.4 Voltage Regulation 321
7.4.1 Regulator Specifications 321
7.4.2 Feedback Analysis 322
7.4.3 Low Dropout Regulators 324
7.5 Summary of Key Points 327
7.6 References 327
7.7 Problems 328
CHAPTER 8 BIPOLAR DEVICES AND CIRCUITS 331
8.1 Bipolar-Junction Transistors 331
8.1.1 Basic Operation 331
8.1.2 Analog Figures of Merit 341
8.2 Bipolar Device Model Summary 344
8.3 SPICE Modeling 345
8.4 Bipolar and BICMOS Processing 346
8.4.1 Bipolar Processing 346
8.4.2 Modern SiGe BiCMOS HBT Processing 347
8.4.3 Mismatch in Bipolar Devices 348
8.5 Bipolar Current Mirrors and Gain Stages 349
8.5.1 Current Mirrors 349
8.5.2 Emitter Follower 350
8.5.3 Bipolar Differential Pair 353
8.6 Appendix 356
8.6.1 Bipolar Transistor Exponential Relationship 356
8.6.2 Base Charge Storage of an Active BJT 359
8.7 Summary of Key Points 359
8.8 References 360
8.9 Problems 360
CHAPTER 9 NOISE AND LINEARITY ANALYSIS AND MODELLING 363
9.1 Time-Domain Analysis 363
9.1.1 Root Mean Square (rms) Value 364
9.1.2 SNR 365
9.1.3 Units of dBm 365
9.1.4 Noise Summation 366
9.2 Frequency-Domain Analysis 367
9.2.1 Noise Spectral Density 367
9.2.2 White Noise 369
9.2.3 1/f, or Flicker, Noise 370
9.2.4 Filtered Noise 371
9.2.5 Noise Bandwidth 373
9.2.6 Piecewise Integration of Noise 375
9.2.7 1/f Noise Tangent Principle 377
9.3 Noise Models for Circuit Elements 377
9.3.1 Resistors 378
9.3.2 Diodes 378
9.3.3 Bipolar Transistors 380
9.3.4 MOSFETS 380
9.3.5 Opamps 382
9.3.6 Capacitors and Inductors 382
9.3.7 Sampled Signal Noise 384
9.3.8 Input-Referred Noise 384
9.4 Noise Analysis Examples 387
9.4.1 Opamp Example 387
9.4.2 Bipolar Common-Emitter Example 390
9.4.3 CMOS Differential Pair Example 392
9.4.4 Fiber-Optic Transimpedance Amplifier Example 395
9.5 Dynamic Range Performance 397
9.5.1 Total Harmonic Distortion (THD) 398
9.5.2 Third-Order Intercept Point (IP3) 400
9.5.3 Spurious-Free Dynamic Range (SFDR) 402
9.5.4 Signal-to-Noise and Distortion Ratio (SNDR) 404
9.6 Key Points 405
9.7 References 406
9.8 Problems...
Erscheinungsjahr: | 2012 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Importe, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | 832 S. |
ISBN-13: | 9781118092330 |
ISBN-10: | 1118092333 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Johns, David
Martin, Kenneth Carusone, Tony Chan |
Hersteller: |
John Wiley & Sons
John Wiley & Sons Inc |
Verantwortliche Person für die EU: | Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, amartine@wiley-vch.de |
Maße: | 233 x 187 x 43 mm |
Von/Mit: | David Johns (u. a.) |
Erscheinungsdatum: | 11.05.2012 |
Gewicht: | 1,647 kg |